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Preface

The present book is an English trandation of
Algébre Locale — Multiplicités
published by Springer-Verlag as no. 11 of the Lecture Notes series.

The original text was based on a set of lectures, given at the Collbge de
France in 1957-1958, and written up by Pierre Gabriel. Its aim was to give
a short account of Commutative Algebra, with emphasis on the following
topics:

a) Modules (as opposed to Rings, which were thought to be the only
subject of Commutative Algebra, before the emergence of sheaf theory
in the 1950s);

b) Homologicul methods, a la Cartan-Eilenberg;

¢) Intersection multiplicities, viewed as FEuler-Poincaré characteristics.

The English translation, done with great care by CheeWhye Chin,
differs from the original in the following aspects:
— The terminology has been brought up to date (e.g. “cohomological
dimension” has been replaced by the now customary “depth”).
— | have rewritten a few proofs and clarified (or so | hope) a few more.
- A section on graded algebras has been added (App. 11l to Chap. IV).
— New references have been given, especially to other books on Commuta-
tive Algebra: Bourbaki (whose Chap. X has now appeared, after a 40-year
wait), Eisenbud, Matsumura, Roberts,

I hope that these changes will make the text easier to read, without
changing its informal “Lecture Notes” character.

J-P. Serre,
Princeton, Fall 1999
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Introduction

The intersection multiplicities of algebraic geometry are equal to some
“Euler-Poincaré characteristics” constructed by means of the Tor func-
tor of Cartan-Eilenberg. The main purpose of this course is to prove this
result, and to apply it to the fundamental formulae of intersection theory.

It is necessary to first recall some basic results of local algebra: primary
decomposition, Cohen-Seidenberg theorems, normalization of polynomial
rings, Krull dimension, characteristic polynomials (in the sense of Hilbert-
Samuel).

Homology comes next, when we consider the multiplicity eq (E, r) of
an ideal of definition q = (z1, .., z,) of a local noetherian ring A with
respect to a finitely generated A -module E . This multiplicity is defined
as the coefficient of n”/r! in the polynomial-like function n — £4(E/q"E)
[here £4(F) is the length of an A -module F ]. We prove in this case the
following formula, which plays an essential role in the sequel:

T
ea(B, 1) = ) (-1) La(Hi(x, E)) (%)
i=0
where the H;(x, E) denotes the homology modules of the Koszul complex
constructed on E by means of x = (xl, Ce, Tp)

Moreover this complex can be used in other problems of local algebra,
for example for the study of the depth of modules over a local ring and of
the Cohen-Macaulay modules (those whose Krull dimension coincides with
their depth), and also for showing that regular local rings are the only local
rings whose homological dimension is finite.

Once formula (x) is proved, one may study the Euler-Poincare charac-
teristic constructed by means of Tor . When one translates the geometric
situation of intersections into the language of local algebra, one obtains
a regular local ring A, of dimension n , and two finitely generated A -
modules E and F over A, whose tensor product is of finite length over
A (this means that the varieties corresponding to E and F intersect only
at the given point). One is then led to conjecture the following statements:
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(i) dim(E) +dim(F) < n ( “dimension formula”).
(il) xa(E, F) = £7(=1)* ta(Tor}(E, F)) is >0.
(iii) xa(E, F) = 0i find only if the inequality in (i) is strict.

Formula (*) shows that the statements (i), (ii) and (iii) are true if
F= A/(z1,... , zr), with dim(F) = n = r . Thanks to a process, using
completed tensor products, which is the algebraic analogue of “reduction to
the diagonal”, one can show that they are true when A has the same char-
acteristic as its residue field, or when A is unramified. To go beyond that,
one can use the structure theorems of complete local rings to prove (i) in
the most general case. On the other hand, | have not succeeded in proving
(if) and (iii) without making assumptions about A, nor to give counter-
examples. It seems that it is necessary to approach the question from a
different angle, for example by directly defining (by a suitable asymptotic
process) an integer. > 0 which one would subsequently show to be equal
to xa (E’ F) .

Fortunately, the case of equal characteristic is sufficient for the ap-

plications to algebraic geometry (and also to analytic geometry). More

specifically, let X be a non-singular variety, let V and W be two irre-
ducible subvarieties of X , and suppose that C =V n W is an irreducible
subvariety of X , with:

dimX +dimC = dimV+dimWw ( “proper” intersection).
Let A, Ay , Aw be the local rings of X,V and W at C . If
(V. W,c; X)

denotes the muiltiplicity of the intersection of V and W at C (in the
sense of Weil, Chevalley, Samuel)) we have the formula:

(V. W, C; X) = xalAv, Aw). (%)

This formula is proved by reduction to the diagonal, and the use of
(*) . In fact, it is convenient to take (x*) as the definition of multiplicities.
The properties of these multiplicities are then obtained in a natural way:
commutativity follows from that for Tor ; associativity follows from the two
spectral sequences which expresses the associativity of Tor : the projection
formula follows from the two spectral sequences connecting the direct im-
ages of a coherent sheave and Tor (these latter spectral sequences have
other interesting applications, but they are not explored in the present
course). In each case, one uses the well-known fact that Euler-Poincare
characteristics remain constant through a spectral sequence.

When one defines intersection multiplicities by means of the Tor-
formula above, one is led to extend the theory beyond the strictly “non-
singular” framework of Weil and Chevalley. For example, if f: X =Y

S O
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is a morphism of a variety X into a non-singular variety Y , one can
associate, to two cycles x and y of X and Y , a “product” x -y y which
corresponds to x N f=1(y) (ofcourse, this product is only defined under
certain dimension conditions). When f is the identity map, one recovers
the standard product. The commutativity, associativity and projection
formulae can be stated and proved for this new product.



Chapter 1. Prime ldeals
and Localization

This chapter summarizes standard results in commutative algebra. For
more details, see [Bour|, Chap. II, llI, IV.

1. Notation and definitions

In what follows, al rings are commutative, with a unit element 1 .

Anided pof aring A iscalled prime if A/p is a domain, i.e. can
be embedded into a field; such an idea is distinct from A .

An ideal m of A is called maximal if it is distinct from A, and
maximal among the ideals having this property; it amounts to the same as
saying that A/m is a field. Such an idea is prime.

A ring A is called semilocal if the set of its maximal ideals is finite.
It is called local if it has one and only one maximal ideal m ; one then
has A = m= A* , where A* denotes the multiplicative group of invertible
elements of A .

2. Nakayama’s lemma

Let ¢+ be the Jacobson radical of A, i.e the intersection of al maximal
ideals of A . Then z € ¢ if and only if 1 —zy is invertible for every y € A.

Proposition 1. Let M be a finitely generated A -module, and g be
an ideal of A contained in the radical t of A. If gM = M , then M =0 .

Indeed, if M is 3 0, it has a quotient which is a simple module, hence
is isomorphic to A/m, where m is a maximal ideal of A ;then mM £ M ,
contrary to the fact that @ C m .
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Corollary 1. If N is a submodule of M such that M = N + qM,
we have M = N.

This follows from prop. 1, applied to M/N .

Corollary 2. If A is a local ring, and if M and N are two finitely
generated A -modules, then:

M®sN =0 < M =0 o N = 0).

Let m be the maximal ideal of A , and k the field A/m Set
M = M/mM and N = N/mN.

If M ®a N is zero, so is }Jf ® N ; this implies M = 0 or N = 0, whence
M =0 or N =0, according to prop. 1.

3. Localization (cf. [Bour|, Chap. Il)

Let S be a subset of A closed under multiplication, and containing 1 . If
M is an A-module, the module $~!M (sometimes also written as Mg )
is defined as the set of “fractions” m/s. M €M, s€ S, two fractions
m/s and m//s/ being identified if and Only if there exists S” € S such
that s(s'm = sm’) = 0 This also applies to M = A, which defines
S~'A . We have natural maps

A—-S A and M — ST'M

given by a — a/l and m ~ m/1 The kernel of M — S™'M s
Anny(S), ie. the set of m € M such that there exists s € S with
sm=0.
The multiplication rule
als d/fd = (aa')/(ss")
defines a ring structure on S™*A Likewise, the module S~'M has a
natural S~'A -module structure, and we have a canonical isomorphism
SlA®a M = STIM.
The functor M + S~'M is exact, which shows that $~14 is a flat
A -module (recall that an A-module F is called flat if the functor

M—-FaM

is exact, cf. [Bour], Chap. I).

The prime ideals of S~! A are the ideals S~1p , where p ranges over
the set of prime ideals of A which do not intersect .S; if p is such an
ideal, the preimage of S™!p under A — S~1Ais P .

. Prime ldeals and Localization 3

Example (i).  If pis a prime ideal of A, take S to be the complement

A =pof p. Then one writes Ap, and M, instead of S™'A and S~1M .
The ring Ap, is a local ring with maximal ideal pA, , whose residue field is

the field of fractions of A/p; the prime ideals of A,, correspond bijectively
to the prime ideals of A contained inp .

It is easily seen that, if M # 0, there exists a prime ideal p with
M, # 0 (and one may even choose p to be maximal). More generally, if
N is a submodule of M , and x is an element of M , one has x € N if
and only if this is so ‘locally”, i.e. the image of x in M, belongs to Ny
for every prime ideal p (apply the above to the module (N + Az}/N .

Example (ii).  If x is a non-nilpotent element of A, take S to be the
set of powers of x . The ring S~ A4 is then # 0, and so has a prime ideal;
whence the existence of a prime ideal of A not containing x . In other
words:

Proposition 2. The intersection of the prime ideals of A is the set of
nilpotent elements of A .

Corollary .
are equivalent:
(1) Every prime ideal containing a contains b (i.e. V(a) ¢ V(b) with
the notation of §5 below).
(2) For every x € b there exists n > 1 such that z" € a.
If b is finitely generated, these properties are equivalent to:
(3) There exists m > 1 such that p™ c a.

Let a and b be two ideals of A . The following properties

The implications (2) = (1) and (3) = (2) are clear. The implication
(1) = (2) follows from proposition 2, applied to A/a. If b is generated
by Ii,...,%, and if 27 € a for every 7 , the ideal b™ is generated by the
monomials
x?=gf-af with Y di =m.
If m > (n —1)r, one of the d; ‘s is > n, hence x4 belongs to a, and we
have ™ C a . Hence (2) = (3)

Remark.. The set of z € A such that there exists n(x) > 1 with
z"(*) € a is an ideal, called the radical of a, and denoted by rad(a) .
Condition (2) can then be written as b ¢ rad(a) .
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4. Noetherian rings and modules

An A -module M is called noetherian if it satisfies the following equiv-
alent conditions:
a) every ascending chain of submodules of M stops;
b) every non-empty family of submodules of M has a maximal element;
c) every submodule of M is finitely generated.
If N is a submodule of M , one proves easily that:

M is noetherian <= N and M/N are noetherian.

The ring A is called noetherian if it is a noetherian module (when
viewed as an A-module), i.e. if every ideal of A is finitely generated. If

A is noetherian, so are the rings A[Xj, . . ., Xp]and A[[X1,..., X}]] of
polynomials and formal power series over A, see eg. [Bour], Chap. I, $2,
no. 10.

When A is ncretherian, and M is an A-module, conditions a), b), c)
above are equivalent to;
d) M is finitely generated.

(Most of the rings and modules we shall consider later will be noethe-
rian.)

5. Spectrum ([Bour], Chap. II, §4)

The spectrum of A is the set Spec(A) of prime ideals of 4. If a is an
ideal of A, the set of p ¢ Spec(A) such that a c p is written as V(a)
We have

Y(@N b) = V(@b) = V(@ u V(b) and V(Za;) = NV(a,).
The V(a) are the closed sets for a topology on Spec(A4) , called the Zariski
topology. If A is noetherian, the space Spec(A) is noetherian: every
increasing sequence of open subsets stops.
If Fis a closed set # @ of Spec(A) , the following properties are
equivalent :
i) F is irreducible, ie. it is not the union of two closed subsets distinct
from F;
ii) there exists p € Spec(A) such that F = V(p) , or, equivalently, such
that F is the closure of {p} .

Now let M be a finitely generated A -module, and a = Ann(M) its
annihilator, i.e. the set of a € A such that ey = (), where a, denotes
the endomorphism of M defined by a.

I. Prime Ideals and Localization 5

Proposition 3. Jf pisa prime ideal of A, the following properties are
equivalent:

a) My #0;

b) p € V(a).

Indeed, the hypothesis that M is finitely generated implies that the
annihilator of the 4, -module M, is a,, , whence the result.

The set of p € Spec(A) having properties a) and b) is denoted by
Supp(M) , and is called the support of M. It is a closed subset of

Spec(A).

Proposition 4.
a) If 0—» M — M — M" — 0 is an exact sequence of finitely gener-
ated A -modules, then
Supp(M) = Supp(M') u Supp(M").
b) If P and Q are submodules of a finitely generated module M , then

Supp(M/(P N Q)) = Supp(M/P) U Supp(M/Q).
c) If M and N are two finitely generated modules, then
Supp(M ®4 N) = Supp(M) N Supp(N).

Assertions a) and b) are clear. Assertion c) follows from cor. 2 to
prop. 1, applied to the localizations M, and Ny of M and N at p .

Corollary . If M is a finitely generated module, and t an ideal of A,
then

Supp(M/tM) = Supp(M) N V().

This follows from c) since M/tM = M ®a A/r.

6. The noetherian case

In this section and the following ones, we suppose that A is noetherian.

The spectrum Spec(A) of A is then a quasi-compact noetherian
space. If F is a closed subset of Spec(A) , every irreducible subset of
F is contained in a maximal irreducible subset of F , and these are closed
in F ; each such subset is called an irreducible component of F The
set of irreducible components of F is finite; the union of these components
isequal to F .
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The irreducible components of Spec(A) are the V(p) , where p ranges
over the (finite) set of minimal prime ideals of A . More generally, let M
be a finitely generated A -module, with annihilator a. The irreducible
components of Supp(M) are the V(p), where p ranges over the set of
prime ideals having any of the following equivalent properties:

i) p contains a, and is minimal with this property;
ii) p is a minimal element of Supp(M)
iii) the module M, is # 0, and of finite length over the ring A,

(Recall that a module is of finite length if it has a Jordan-Hélder
sequence; in the present case, this is equivalent to saying that the module
is finitely generated, and that its support contains only maximal ideals.)

7. Associated prime ideals ([Bour], Chap. IV, $1)

Recall that A is assumed to be noetherian.

Let M be a finitely generated A -module, and p € Spec(A) . A prime
ideal p of A is said to be associated to M if M contains a submodule
isomorphic to A/p, equivalently if there exists an element of M whose

annihilator is equal to p. The set of prime ideals associated to M is
written as Ass(M) .

Proposition 5.  Let P be the set of annihilators of the nonzero elements
of M . Then every maximal element of P is a prime ideal.

Let m be an element # 0 of M whose annihilator p is a maximal
element of P . If xy € pand x ¢ p, then xm #£ (, the annihilator of xm
contains y, and is therefore equal to p, since p is maximal in P . Since
yxm =0, we have y € Ann(zm) = p , which proves that p is prime.

Corollary 1. If M # 0, then Ass(M) # 0.

Indeed, P is then non-empty, and therefore has a maximal element,
since A is noetherian.

Corollary 2. There exists an increasing sequence (M;)q<i<n Of sub-
modules of M , with M; =0 and M, = M, such that, for 1 <i<n ,
M;/M,_, is isomorphic to A/p,, with p; € Spec(4) .

If M # 0, corollary 1 shows that there exists a submodule M; of M
isomorphic to A/p, , with p; prime. If M; # M, the same argument, ap-
plied to M /M, , proves the existence of a submodule M, of M containing

I. Prime ldeals and Localization 7

M, and such that M,/M; is isomorphic to A/p2, with py prime, and
so on. We obtain an increasing sequence (A;) ; in view of the noetherian
character of M , this sequence stops; whence the desired result.

Exercise. Deduce from corollary 1 (or prove directly) that the natural
map
M-y M
pEAss(M)
is injective.

Proposition 6. Let S be a subset of A closed under multiplication
and containing 1; let p € Spec(A) be such that S n p= 0. In order that
the prime ideal S‘lp of S~1A is associated to S~ M | it is necessary and
sufficient that p is associated to M .

(In other words, Ass is compatible with localization.)

If p € Ass(M) , there is an element m € M whose annihilator is p ;
the annihilator of the element m/l of S~1M is S~'p ; this shows that
S~1p € Ass(S™IM).

Conversely, suppose that $~1p is the annihilator of an element m/s
of S"IM, with m € M, s € S. If ais the annihilator if m , then
S~ta = S7'p, which implies a c¢p , cf. §3, and also implies the existence
of s € S with s'p ¢ a. One checks that the annihilator of s'mis p ,
whence p € Ass(M) .

Theorem 1. Let (Mi)ogign be an increasing sequence of submodules
of M, with My =0 and M, = M, such that, for 1 <i<n, M;/M;_
is isomorphic to A/p; , with p; € Spec(A), cf.corollary 2 to proposition 5.
Then

Ass(M) C {p1,. . . pn} C Supp(M),
and these three sets have the same minimal elements.

Let p € Spec(A) . Then M, #£ 0 if and only if one of (A/p;)p is # 0,
i.e. if and only if p contains one of p; . This shows that Supp(M) contains
{p1,... P}, and that these two sets have the same minimal elements.

On the other hand, if p € Ass(M) , the module M contains a sub-
module N isomorphic to A/p. Let i be the smallest index such that
N n M; #0 ;if m is a nonzero element of N n M; , the module Am.
is isomorphic to A/p, and maps injectively into M;/M; 1 % A/p; ; this
implies p = p: , whence the inclusion Ass(M) c{p;,. ., pn} -

Finally, if p is a minimal element of Supp(M) , the support Supp(M,)
of the localization of M at p is reduced to the unique maximal ideal
pA, of A, . As Ass(M,) is non-empty (cor. 1 to prop. 5) and contained
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in Supp(M,), we necessarily have pA, € Ass(M,), and proposition 6
(applied to S = A—p ) shows that p € Ass(M), which proves the theorem.

Corollary . Ass(M) is finite.
A non-minimal element of Ass(M) is sometimes called embedded.

Proposition 7. Let a be an ideal of A. The following properties are
equivalent:
i) there exists m € M, m # 0, such that am =0 ;
ii) for each x € a, there exists m € M, m # 0, such that xm = 0;
iii) there exists p € Ass(M) such that a Cp;
iv) a is contained'in the union of the ideals p € Ass(M).

The equivalence of i) and iii) follows from prop. 5 and the noetherian
property of A. The equivalence of iii) and iv) follows from the finiteness
of Ass(M), together with the following lemma:

Lemma 1. Let a,p1,...,pn be ideals of a commutative ring R. If
the p; are prime, and if a is contained in the union of the p; , then a is
contained in one of the p; .

(It is not necessary to suppose that all the p; are prime; it suffices
that n — 2 among them are so, cf. [Bour}, Chap. II, §1, prop. 2.)

We argue by induction on n, the case n = 1 being trivial. We can
suppose that the p; do not have any relation of inclusion among them
(otherwise, we are reduced to the case of n—1 prime ideals). We have to
show that, if a is not contained in any of the p; , there exists z € a which
does not belong to any of the p;. According to the induction hypothesis,
there exists y € a such that y ¢ p,, 1 <i<n-—1.1If y ¢ p,, we take
r=y.If y€p,,wetake x=y+2zt; - t,_1, with

Z€a, z¢Ppn, and t;€p;, t;¢pn.

One checks that z satisfies our requirement.

Let us go back to the proof of prop. 7. The implication i) = ii) is
trivial, and ii) = iv) follows from what has already been shown (applied
to the case of a principal ideal). The four properties i), ii), iii), iv) are
therefore equivalent.
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Corollary .  For an element of A to be a zero-divisor, it is necessary
and suflicient that it belongs to an ideal p in Ass(A).

This follows from prop. 7 applied to M = 4.

Proposition 8. Let © € A and let z)s be the endomorphism of M
defined by x . The following conditions are equivalent:
i) xpr Is nilpotent;
ii) z belongs to the intersection of p € Ass(M) (or of p € Supp(M),
which amounts to the same according to theorem 1).

If p € Ass(M), M contains a submodule isomorphic to A/p; if xp
is nilpotent, its restriction to this submodule is also nilpotent, which implies
z € p; whence i) = ii}.

Conversely, suppose ii) holds, and let (M;) be an increasing sequence
of submodules of M satisfying the conditions of cor. 2 to prop. 5. Accord-
ing to th. 1, = belongs to every corresponding prime ideal p;, and we have
zp{(M;) C M;_; for each i, whence ii).

Corollary .  Let p € Spec(A). Suppose M # 0. For Ass(M) = {p}, it
is necessary and sufficient that xps is nilpotent (resp. injective) for every
x €p (resp. for every x ¢ p ).

This follows from propositions 7 and 8.

Proposition 9. If N is a submodule of M , one has:
Ass(N) C Ass(M) C Ass(N)YU Ass(M/N).

The inclusion Ass(V) C Ass(M) is clear. If p € Ass(M), let E be
a submodule of M isomorphic to A/p. If ENN =0, E is isomorphic
to a submodule of M/N, and p belongs to Ass(M/N). If ENN # 0,
and z is a nonzero element of E N N, the submodule Ax is isomorphic
to A/p,and p belongs to Ass(N). This shows that Ass(M) is contained
in Ass(N)U Ass(M/N).

Proposition 10.  There exists an embedding

M- ] E®),

pEAss(M)
where, for every p € Ass(M), E(p) is such that Ass(E(p)) = {p}.

For every p € Ass(M), choose a submodule Q(p) of M such that
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p ¢ Ass(Q(p)), and maximal for that property. One has Q(p) # M .
Define E(p) as M/Q(p) . If g € Spec(A4) is distinct from p , E(p) cannot
contain a submodule M’/Q(p) isomorphic to A/q, since we would have
p ¢ Ass(M') by proposition 9, and this would contradict the maximality

o f Q(p). Hence Ass(E(p)) C {p}and equality holds since E(p) # 0,
cf. cor. 1 to prop. 5. The same corollary shows that the intersection of the
Q(p) , for p€ Ass(M) , is 0, hence the canonical map

M —T] Ep)

is injective.

Remark.  When p is a minimal element of Ass(M) , the kernel of the
map M — E(p) is equal to the kernel of the localizing map A4 — M,

hence is independent of the chosen embedding. There is no such uniqueness
for the embedded primes.

8. Primary decompositions ([Bour], Chap. IV, §2)

Let A, M be as above. If p € Spec(A4) , a submodule Q of M is called
a p-primary submodule of M if Ass(M/Q) = {p} .

Proposition 11 Every submodule N of M can be written as an
intersection:
N o= ) Qb
pEAss(M/N)

where Q(p) is a p -primary submodule of M .

This follows from prop. 10, applied to M/N

Remark. Such a decomposition N = (\Q(p) is called a reduced
(or minimal) primary decomposition of N in M . The elements of
Ass(M/N) are sometimes called the essential prime ideals of N in A4

The most important case is the one where M = A, N = g, with g
being an ideal of A. One then says that q is p -primary if it is p -primary
in A ; one then has p™ ¢ q c p for some n > 1, and every element of
A/q which does not belong to p/q is a non-zero-divisor.

(The reader should be warned that, if a is an ideal of A , an element
of Ass(A/a) is often said to be “associated to a”, cf. e.g. [Eis], p.89. We
shall try not to use this somewhat confusing terminology.)

Chapter Il. Tools

A: Filtrations and Gradings
(For more details, the reader is referred to [Bour], Chap. Ill.)

1. Filtered rings and modules

Definition 1. A filtered ring isaring A given with afamily (4, )¢z
of ideals satisfying the following conditions:

Ag = A, An+l C An, ApAq C Ap-l-q-

A filtered module over the filtered ring A is an A-module M given
with a family (M, )rez of submodules satisfying the following conditions:

My = M, M,1 C M, Aqu C Mp+q.

[ Note that these definitions are more restrictive than those of [Bour],
loc. cit. |

The filtered modules form an additive category F4 , the morphisms
being the A -linear maps % : M — N such that w(M,) ¢ N,, . If P is
an A -submodule of the filtered module M , the induced filtration on
P is the filtration (P,) defined by the formula P, = P n M, . Similarly,
the quotient filtration on N = M/P is the filtration (V,,) where the
submodule N, = (M,, + P)/P is the image of M, .

In F4 , the notions of injective (resp. surjective) morphisms are the
usual notions. Every morphism »: M — N admits a kernel Ker(u) and a

cokernel Coker(w) : the underlying modules of Ker(u) and Coker(u) are
the usual kernel and cokernel, together with the induced filtration and the
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quotient filtration. We similarly define Im(u) = Ker(N — Coker(u)) and
Coim(u) = Coker(Ker(1 }» M) . We have the canonical factorization:

Ker(u) - M — Coim(u) 9, Im(u) — N — Coker(u),

where § is bijective. One says that u is a strict morphism if § is an
isomorphism of filtered modules; it amounts to the same as saying that
u(M,,) = Nn n u(M) for each n € Z . There exist bijective morphisms
that are not isomorphisms ( Fy4 is not an abelian category).

Examples of filtrations.

a) If m is an ideal of A, the m-adic filtration of A (resp. of
the A-module M ) is the filtration for which A, = m"™ for n > 1 (resp.
M, =m™M for n > 1).

b) Let A be a filtered ring, N a filtered A-module, and M an
A -module. The submodules Hom4(M, N,) of Homa (M, N) define on
Hom 4 (M, N) a filtered module structure.

2. Topology defined by a filtration

If M is a filtered A-module, the M, are a basis of neighborhoods of 0
for a topology on M compatible with its group structure (cf. Bourbaki,
TG III). This holds in particular for A itself, which thus becomes a topo-
logical ring; similarly, M is a topological A-module.

If m is an ideal of A, the m -adic topology on an A -module M is
the topology defined by the m -adic filtration of M

Proposition 1. Let N be a submodule of a filtered module M . The
closure N of N is equal to (IV + M,,) .

Indeed, saying that x does not belong to N means that there exists
n € Z such that (x+M,)NN = 0, i.e. that x does not belong to N+M,, .

Corollary . M is Hausdorff if and only if (1 M, = 0.

A: Filtrations and Gradings 13

3. Completion of filtered modules

If M is a filtered A-module, we write M for its Hausdorff completion;
this is an A -module, isomorphic to l}_r__n M/M, . If we set

M, = Ker(M — M/M)),

M becomes a filtered A-module, and M/M, = M/M, ; M, is the
completion of M, , with the filtration induced by that of M .

Proposition 2. Let M be a filtered module, Hausdorff and complete.
A series Y 1, , z, € M, converges in M if and only if its general term
z, tends toward zero.

The condition is obviously necessary. Conversely, if z, — 0, there
exists for every p an integer n(p) such that n > n(p) = z, € M, . Then
TptTny1t ... + Tppk € My for every k > 0, and the Cauchy criterion
applies.

Proposition 3. Let A be a ring and m an ideal of A . If A is
Hausdorff and complete for the m -adic topology, the ring of formal power
series A[[X]] is Hausdorff and complete for the (m, X) -adic topology.

The ideal (m, X)™ consists of the series ag+ a1 X + ...+ g XF +
such that a, € m™"™? for 0 < p < n . The topology defined by these
ideals in A[[X]] is therefore the topology of pointwise convergence of the
coefficients q; ; i.e., A[[X]] is isomorphic (as a topological group) to the
product AN | which is indeed Hausdorff and complete.

Proposition 4. Let my,... , my be pairwise distinct maximal ideals
of the ring A, and let t = my N .. N mg . Then there is a canonical
isomorphism

A

A=1] A
1<i<k
where A is the completion of A for the t -adic topology, and where Am,-
is the Hausdorff completion of Ay, for the m;A,,, -adic topology.
[ There is an analogous result for modules. |

As the m;, 1 <1<k, are pairwise distinct, we have

A = Afmin o m)= [T A /ml A

1<i<k
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[We are using here a variant of Bézout’s lenma if ay,..., a; are ideals of
A such that a; + a;= A for s # j, the map A — [] A/q,,is surjective
with kerdl  equal ©0 a; . . .q, of eg. [Bour], Chap. 11, §1, no. 2]

Hence:
A = lmA/" = JT lim(Am, /m24,,) = I 4n..
1<i<k
Remark.  The proposition applies to the case of a semi-local ring A,

taking for m; the set of maxima ideals of A ; the idea ¢ is then the
radical of A

4. Graded rings and modules

Definition 2. A graded ring isaring A given with a direct sum de-
composition

4 = @ 4,

ne
where the A, are additive subgroups of A such that A, = {0} ifn < 0

and A,A, ¢ A+, . A graded module over the graded ring A is an
A-module M given with a direct sum decomposition

M = P M,

nezZ
where the M,, are additive subgroups of M such that M,, = {0} ifn<O

and ApM, ¢ My, .

Now let M be a filtered module over a filtered ritg 4. We write
gr(M) for the direct sum &gr, (M), where gr, (M) = M,/M,,,. The
canonical maps from A, x M, 10 m_,  define, by passing to guoti—-
bilinear maps from grp(A) x gr (M) to g?pﬂ (M), Whence a bilinear map
from gr(A) x gr(M) to gr(M) .

In particular, for M = A, \ve obtain a graded ring structure on_gr(A)

3
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m = (X,,...,X,}, and provide 4 with the m -adic fiItthion. The graded

ring gr(A) associated to A is the polynomial agebra X X,

graded by total degree.

The modules M , M and gr(M) have similar properties. First:

Proposition 5. The canonical maps M —>AM and A — A induce
isomorphisms gr(M) = gr(M) and gr(A) = gr(4) .

This is clear.

Proposition 6. Let u: M — N be a morphism of filtered modules.
We suppose that M is complete, N is Hausdorff, and gr(u) is surjective.
Then yu is a surjective strict morphism, and N is complete.

Let n be an integer, and let y € N . We construct a sequence
(zk)k>0 Of elements of M, such that
Teyr = ¢ Mod Mpyx and u(zg) =y mod Npyk.
We proceed by induction starting with o = 0. If xj has been constructed,
we have u(zx) — Y € Nnyk and the surjectivity of gr(u) shows that there
exists t;, € Myyg such that u(ty) = u(zg) — y mod Npik+1; we take
Tiy1 = T — tr . L€t x be one of the limits in M of the Cauchy sequence

(zx) ;as M, is closed, we have 1 € M, , and u(z) = limu(z) is equal
toy . Therefore u(My) = N, | which shows that v is a surjective strict

morphism.  The topology of N is a quotient of that of M ad it is
therefore a complete module.

Corollary 1. Let A be a complete filtered ring, M a Hausdorff fil-

tered A -module, (2:)icr a finite family of elements of M , and (n;) a
finite family of integers such that z;, ¢ M,, . Let T; be the image of z;

in gr, (M) . If the T; generate the gr(A) -module gr(M) , then the z;

this is the graded ring associated to the filtered ring A. Smilaly
generate M , and M is’ complete.

the map gr(A) x gr(M) — gr(M) ; ;

. provides gr(M) with a gr(A)-graded
module structure. If » © M _ N s a morphism of filtered modules,
defines, by passing to quotients, homomorphisms

grn(u) . Mn/Mn+1 — Nn/Nn-f—ly
whence a homomorphism gr(u) : gr(M) — gr(N)

Let E = A’, and let E, be the subgroup of E which consists of
(a;)ic; Such that a; € A,_n, for each i ¢ I. This defines a filtration

of F ,and the associated topology is the product topology of Al Let
v : E — M be the homomorphism given by:

u((@)) = Y @iz

This is a morphism of filtered modules, and the hypothesis made on the

Example. et k bearing, and let A = E[[Xy, .
77 amounts to saying that gr(u) is surjective. Hence the result according

, X,|] be the algebra
of formal power series over k in the indeterminates Xj, . . .

. X, Let
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to proposition& [ The proof shows also that M, = 3" Ap_n,z; for each
integer n . |

Corollary 2. If M is a Hausdorff filtered module over the complete
filtered ring A , and if gr(M) is a finitely generated (resp. noetherian)
gr(A) -module, then M is finitely generated (resp. noetherian, and each
of its submodules is closed).

Corollary 1 shows that, if gr(M) is finitely generated, then M is
complete and finitely generated. Moreover, if N is a submodule of M
with the induced filtration, then gr(N) is a graded gr(A) -submodule of
gr(M) ; thus if gr(M) is noetherian, gr(N) is finitely generated, and N
is finitely generated and complete (therefore closed since M is Hausdorff);
hence M is noetherian.

Corollary 3. Let m be an ideal of the ring A. Suppose that A/m is
noetherian, m is finitely generated, and A is Hausdorff and complete for
the m -adic topology. Then A is noetherian.

Indeed, if m is generated by zi,..., Z,, then gr(A) is a quotient of
the polynomial algebra (A/m)[Xy, ..., X,], and therefore is noetherian.
The corollary above then shows that A is noetherian.

Proposition 7. If the filtered ring A is Hausdorff, and if gr(A) is a
domain, then A is a domain.

Indeed, let x and y be two nonzero elements of A. We may find n, m
such that x € A, — Ap41,Y € A, — A,t1; the elements x and y then
define nonzero elements of gr(A) ; since gr(A) is a domain, the product
of these elements is nonzero, and a fortiori we have xy # 0 , whence the
result.

One can similarly show that if A is Hausdorff, noetherian, if every
principal ideal of A is closed, and if gr(A) is a domain and is integrally
closed, then A is a domain and is integrally closed (cf. for example [ZS],
vol. 1l, p.250 or [Bour], Chap. V, §1). In particular, if k is a noetherian
domain, and is integrally closed, the same is true for k[X]and for k[[X]] .

Note also that, if £ is a complete nondiscrete valuation field, the
local ring k({X1,.. ,X,)) ofconvergent series with coefficients in & is
noetherian and factorial (that may be seen via Weierstrass “preparation
theorem?”).
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5. Where everything becomes noetherian again —
¢ -adic filtrations

From now on, the rings and modules considered are assumed to be noethe-
rian. We consider such a ring A and an ideal q of A;we provide A with
its q -adic filtration.

Let M be an A-module filtered by (M,) with M, ¢ M4, for
every n > 0. We associate to it the graded group M which is the
direct sum of the M, , n >0 ;in particular, A= @ 9™ . The canonical
maps A, x My, — M,,, extend to a bilinear map from A x M to M ;
this defines a graded A -algebra structure on 4, and a graded A -module
structure on M [ in algebraic geometry, A corresponds to blowing up at
the subvariety defined by q , cf. e.g. [Eis], §5.2].

Since q is finitely generated, 4 is an A -algebra generated by a finite
number of elements, and thus is in particular a noetherian ring.

Proposition 8.  The following three properties are equivalent:
(a) We have M,.; = ¢M, for n sufficiently large.
(b) There exists an integer m such that Mpyx = q’“Mm for k >0

(c) M is a finitely generated A -module.

The equivalence of (a) and (b) istrivial. If (b) holds for an integer m,
it is clear that M is generated by Ziﬁn M; , whence it is finitely gener-
ated; hence (c). Conversely, if M is generated by homogeneous elements of
degree n; , it is clear that we have M,,;1= gM, for n > sup n;; whence

(c) = (2).

Definition  The filtration (M) of M is called g -good if it satisfies
the equivalent conditions of prop. 8 (i.e., we have M, .1 DM, for all n,
with equality for almost all n ).

Theorem 1 ( Artin-Rees). If P is a submodule of M, the filtration
induced on P by the q -adic filtration of M is g -good. In other words,
there exists an integer m such that

Png™tEM = g*(Pn q™M)  forallk>0.

We clearly have P ¢ M ;since M is finitely generated, and 4 is
noetherian, P is finitely generated, which proves the theorem.

[ This presentation of the Artin-Rees Lemma is due to Cartier; it is
reproduced in [Bour], Chap. IlI, §3.]
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Corollary 1. Every A -linear map u : M — N is a strict homomor-
phism of topological groups (in the sense of Bourbaki, TG Ill) when M
and N are given the q -adic topology.

It is trivial that the q -adic topology of u(M) is a quotient of that of
M , and theorem 1 implies that it is induced by that of N .

Corollary 2. The canonical map A ®a Mo M is bijective, and the
ring A is A -flat.

The first assertion is obvious if M is free. In the general case, choose
an exact sequence:
i1 >Ly—M-—>0
where the L, are free. We have a commutative diagram with exact rows:

A®al; —— A®aLy —— A@aM —— 0

o o] !

ty, — Ly —» M ——

Since ¢g and ¢; are bijective, so is ¢ . Further, since the functor M - M
is left exact, so is the functor M — A ® 4 M (in the category of finitely
generated modules — therefore also in the category of all modules), which
means that A is A-flat.

Corollary 3.  If we identify the Hausdorff completion of a submodule
N of M with a submodule of M , we have the formulae:
N = AN, Ny+N; = (N +Ny)5 NNy = (NN Ny

We leave the proof to the reader; it uses only the noetherian hypothesis
and the fact that A is flat. In particular, corollary 3 remains valid when we
replace the functor M + M by the “localization” functor M — S—1Mf |

where S is a multiplicatively closed subset of A

Corollary 4.  The following properties are equivalent:

(i) q is contained in the radical t of A .

(i) Every finitely generated A -module is Hausdorff for the q -adic topol-
ogy.

(iii) Brer su modi d ofa fniie ylgenerated A -module is closed for the
q -adic topology.

(i) = (ii) Let P be the closure of O ; the q -adic topology of P
is the coarsest topology, whence P = qP , and since g C ¢, this implies
P = 0 by Nakayama’s lemma.
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(i) = (iii) . If N is a submodule of M , the fact that M/N is
Hausdorff implies that N is closed.

(iii) = (i) . Let m be a maximal ideal of A . Since m is closed in
A,wehave qC m, whence also qCrt.

Corollary 5. If A is local, and if g is distinct from A, we have
ﬂ gt = o
n>0

This follows from corollary 4.

Definition . A Zariski ring is a noetherian topological ring whose topol-
ogy can be defined by the powers of an ideal g contained in the radical
of the ring. [ This condition does not determine q in general; but if g’
satisfies it, we have ¢" ¢ g and (¢')™ c q for some suitable integers n
and m . |

If A is a Zariski ring, and if M is a finitely generated A-module,
the g -adic topology of M does not depend on the choice of q (assuming,
of course, that the powers of g define the topology of A }; it is called the
canonical topology of M . It is Hausdorff (corollary 4), which allows us
to identify M with a submodule of M . If N is a submodule of M , we
havetheinclusions N ¢ N ¢ Mand NCcMcC M ,and also N=NnM
(since N is closed in M ).

B: Hilbert-Samuel Polynomials

1. Review on integer-valued polynomials

The binomial polynomials Q(X),k=0,1,...are:

QO(X) = 11
Q1(X) = X,
-1)... - K
0 () :Oykc _ X(X=1) I(!(x +1)
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They make up abasis of Q[X] . Moreover, if A denotes the standard
difference  operator:

Af(n) = f(n + 1) = f(n),
one has AQy = Qp—1 for k> 0.

Lemma 1. Let f be an element of Q[X] . The following properties are
equivalent:
a) f isa Z -linear combination of the binomial polynomials Q .
b) One has f(n) € Z forall n € Z .
¢) One has f(n) € Z for all n € Z large enough.
d) Af has property a), and there is at least one integer n such that
f(Nn) belongs to Z .

The implications a) = b) = c) and a) = d) are clear. Conversely,
if d) is true, one may write Af as A f =3 exQx, with ex € Z , hence
f= Y exQr+1 + e, With ey € Q ; the fact that f takes at least one
integral value on Z shows that es is an integer. Hence d) < a) . To
prove that c) = a) , one uses induction on the degree of f . By applying
the induction assumption to Af , one sees that A f has property a), hence
f has property d), which is equivalent to a), ged.

A polynomial f having properties a), . . ., d) above is called an
integer-valued polynomial.

If f is such a polynomial, we shall write ex( f) for the coefficient of
Qk in the decomposition of f :

f = Z exQk-

One has ex(f) = ex—1(Af) if k > 0. In particular, if deg(f) <k, ex(f)
is equal to the constant polynomial A*f , and we have

f(X) = ek(f)'—%ki- g(X),  with deg(g) < k.

If deg(f) = k, one has

nk
f(n) ~ ex(f)oy  for n—o0;

hence:
ex(f) >0 <= f(n) > 0 for all large enough n .
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2. Polynomial-like functions

Let f be a function with values in Z which is defined, either on Z , or
on the set of all integers > ng , where ng is a given integer. We say
that f is polynomial-like if there exists a polynomial Py (X) such that
f(n) = P¢(n) for all large enough n . It is clear that Py is uniquely
defined by f , and that it is integer-valued in the sense defined above.

Lemma 2. The following properties are equivalent:
(i) f is polynomial-like;
(ii) Af is polynomial-like;
(iii) there exists r > 0 such that A" f (n) = 0 for all large enough n .

It is clear that (i) = (ii) = (iii) .

Assume (ii) is true, so that Pay is well-defined. Let R be an integer-
valued polynomial with AR = PAf (such a polynomial exists since Pa ¢ is
integer-valued). The function g : n - f(n) -R(n) is such that Ag(n) =0
for all large n ; hence it takes a constant value ¢g on all large n . One has
f(n) = R(n) + e for all large n ; this shows that f is polynomial-like.
Hence (ii) < (i) .

The implication (iii) = (i) follows from (ii) = (i) applied r times.

Remark. If f is polynomial-like, with associated polynomial Pr , we
shall say that f is of degree k if Py is of degree k , and we shall write
ex(f) instead of ex(Py).

3. The Hilbert polynomial

Recall that a commutative ring A is artinian if it satisfies the following
equivalent conditions:
(i) A has finite length’(as a module over itself);
(ii) A is noetherian, and every prime ideal of A is maximal.
The radical ¢ of such a ring is nilpotent, and A/r is a product of a
finite number of fields.

In what follows we consider a graded ring H = @ H,, having the
following properties:
a) H, is artinian,
b) the ring H is generated by H, and by a finite number (z1,.. . ,z,)
of elements of H; .
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Thus H is the quotient of the polynomial ring Hy [Xi,. . ., X,] by a
homogeneous ideal. In particular, H is noetherian.

Let M = @ M, be a finitely generated graded H -module. Each M,
is a finitely generated Hj -module, hence has finite length. We may thus
define a function n + x(M, n) by:

X(M7 n) = eHo(Mn))

where ¢ denotes the length. We have x(M,n) = 0 when n is small
enough. The behavior of x(M, n) for n = +00 is given by:

Theorem 2 (Hilbert). x(M, n) is a polynomial-like function of n , of
degree<r 1.

We may assume that H= Ho[X1, ..., X,].

We use induction on r . If r =0, M is a finitely generated module
over Hy and is therefore of finite length. Hence M, = 0 for n large.
Assume now that r > 0, and that the theorem has been proved for r - 1.
Let N and R be the kernel and cokernel of the endomorphism ¢ of M
defined by X, . These are graded modules, and we have exact sequences:

OﬁNn—)MnﬂMn.',l—)Rn_*,l—"o.
Hence:
AX(M,n) = X(M,?’L+ 1) _X(M7n) = X(Ran+1) _X(an)'
Since X, R=0and X,N =0, R and N may be viewed as graded
modules over Ho[X1, . . . ,X,_1] By the induction assumption, x(R,n)
and x(N, n) are polynomial-like functions of degree < r — 2 . Hence

Ax( M, n) has the same property; by lemma 2, x( M, n) is polynomial-like
of degree <7 —1, qed.

Notation. The polynomial associated to n — x(M,n) is denoted by
QM) , and called the Hilbert polynomial of M . Its value at an integer
n is written Q(M, n) . One has Q(M) = 0 if and only if C(M) < .

Assume r > 1. Since degQ(M) < r — 1, the polynomial A™"1Q(M)
is a constant, equal to e,._;(Q(M)) with the notation of §1. One has
AT‘IQ( M) > 0 since Q( M, n) > 0 for n large. Here is an upper bound
for ATT1Q(M):

Theorem 2. Assume that M, generates M as an H-module. Then:
a) A™IQ(M) < UMo).
b) The following properties are equivalent:

bl) A'--'&(M) = {(Mo);
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b2) x(M, n) = g(My) (*F77') for alln >0 ;

-1
b3) the natural map MO@,;0 Ho[Xy, ..., X;] = M is an isomorphism.
Here again we may assume that H= Hg[X1, ..., X,]. Put:

M= My®g, H = My[Xy,... ,X,].

The natural map M — M is surjective by assumption. If R is its kernel,
we have exact sequences

O—‘Rn——»]\;[n—»Mn—)O (nz()).
Hence
n+r—1

(M) + R = i) = af}ET )

By comparing highest coefficients, we get
(%) ATTIQ(M) = £(Mo) = ATTIQ(R).

This shows that a) is true. It is clear that b2) < b3) = bl) . It remains to
see that bl) = b3) . Formula (*)above shows that it is enough to prove:

(**) If R is a nonzero graded submodule of M = Mg[X}, . . ., X;], then
ATT'Q(R) > 1.

To do that, let
0=McM'c...c M* =M,

be a Jordan-Holder series of My; put R*= Rn Mi=Rn M{[X,,.. ., X,.]
fori=0,...,s. Since R # 0, one can choose i such that R* # R*=' .
We have

Q(R,n) > Q(R'/R'"1, n)  for n large enough.

Moreover, Ri/R*~1is a nonzero graded submodule of M*/M*"! @y, H .
The Hy -simple module M*/M*~!is a I-dimensional vector space over a
quotient field k of Hyp : Hence R*/R'~! may be identified with a graded
ideal a of the polynomial algebra k[X;, ..., X,]. If fis a nonzero homo-
geneous element of a, then a contains the principal ideal f-k[Xq, . ., X] ,
and for large enough n , we have

n+r—1
r=1

Q(RY/R™n + 1) = lanye) 2 ( ) where t = deg(f)

Hence AT-1Q(Ri/Ri-1)> 1, and a fortiori A" 1Q(R) > 1, qed.
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4. The Sammuel polynomial

Let A be a noetherian commutative ring, and let M be a finitely generated
A -module, and g an ideal of A. We make the following assumption:

(4.1) Z(M/qM) < 0.
This is equivalent to:
(4.2) All the elements of Supp(M) N V(q) are maximal ideals.

(The most important case for what follows is the case where A is local,
with maximal ideal m, and q is such that m O q D m* for some §>0.)
Let (M;) be a g-good filtration of M (cf. part A, §5). We have

M=My>M >....

M; DO qM;_, with equality for large i.
Since V(q") = V(q) for all n > 0, the A -modules M/q“M have finite
length, and the same is true for M/M since M, > 9"M _ Hence the
function

fuin— (M/M)

is  well-defined.

Theorem 3 (Samuel).  The function
fvin = €M/M,)
is  polynomial-like.

To prove this we may assume that Ann(M) = 0 (if not, replace A
by A/ Ann(M) , and replace g by its image in A/ Ann(M) ). Then (4.2)
shows that the elements of V(q) are maximal ideals, i.e. that A/q is

artinian.  Let
H = gra) = P q"/a™"
be the graded ring of A relative to its q -adic filtration. The direct sum

= @ Mn/Mn+1
is a graded H-module. If M,1 = qM, for n > ngy , gr(M) is generated
by
Mo/M1 b-..D Mno/Mno+1;

hence it is finitely generated. By theorem 2, applied to H and to gr(M),
the function n — x(gr(M),n) = €(M,/My,+1) is polynomial-like. More-
over, we have Afay(n) = &(M/Mpny1) —4(M/M,) = £(Myn/Myny1) This
shows that Afps is polynomial-like; by lemma 2, the same is true for fas ,

qged.

Remark. The integer-valued polynomial Py, associated to fas will
be denoted by P({M;)) , and its value at an integer n will be written
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P((M;), n) . The proof above shows that:

(4.3) AP((M;)) = Q(gr(M)),

where Q(gr(M)) is the Hilbert polynomial of the graded module gr(M) .
When (M;) is the q -adic filtration of M (i.e. M; = q'M for all

i > 0), we write P;(M) instead of P((q°M)) . As a matter of fact, there

is not much difference between the general case and the g -adic one, as the

following lemma  shows:

Lemma 3. We have
Pa(M) = P((My)) R,

+
where R is a polynomial of degree < deg( P; (M) — 1 , whose leading term
is >0.

Indeed, let m > 0 be such that M, 4, = M, for n > m. We have
"M ¢ Mpym = "My c "M ¢ Mp,  (n>0),
hence:
Py(M,n+m) > P((M;),n+m) > Py(M,n) > P((M;),n) for n large.

This shows that Py(M, n) — P((M;),n) is > 0 for n large, and that
Py(M) and P((M;)) have the same leading term. Hence the lemma.

From now on, we shall be interested mostly in Py(M) and its leading
term.

Proposition 9. Let a = Ann(M) , B = A/a, and denote the B-ideal
(@ +q)/aby p . Assume that p is generated by r elements zy, . . , z, .
Then:

a) deg Py(M) < r.

b) ATP,(M) < /qM)

¢) We have A™Py(M) = {(M/qM) if and only if the natural map

¢ H(M/aM) [Xy,. ., Xi] - gr(M)
is an isomorphism.

(The map ¢ is defined via the homomorphism

(B/p)[X1,... . X;] — er(B)
given by the z;.)

We may assume a = 0, hence B = A, p= g, and gr(4) is a
quotient of the polynomial ring (4/q)[X1,..., X,]. The case r = o is
trivial. Assume r > 1. By (4.3), we have

(4.4) ATPy(M) = ATIQ(gr(M)).
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By theorem 2, Q(gr(M)) has degree <r — 1. Hence P,(M) has degree
< r, and a) is true.Assertions b) and c) follow from (4.4) and theorem 2.

The function M — Py(M) is “almost” additive. More precisely, con-
sider an exact sequence

0 >N—M-—-P—0.

Since M/qM has finite length, the same is true for N/qN and P/qP;
hence the polynomials P, (N) and P;(P) are well-defined.

Proposition 10. We have
Py(M) = Py (N) + Fy (P) - R,

where R is a polynomial of degree < deg P; (N) = 1, whose leading term
is>0.

Indeed, put N; = g*M N N. By theorkm 1 (Artin-Rees), (N;) is a
g -good filtration of N , and we have
UM/q"M) = {(N/N,) + £P/q"P) forn >0,
hence
Fy(M) = P((Ni)) + Fy(P).
By lemma 3, applied to N, we have
P((N:)) = Py(N) + R,

with deg R < deg P,(N) =1, and R(n) > 0 for n large. The proposition
follows.

Notation. If d is an integer > deg P, (M) , we denote by e, (M, d) the
integer AP, (M) . Hence:
eq(M,d)=0 if d > deg Py(M),
eq(M,d) >1  if d= deg Py(M).
Moreover, if d = deg Py (M) , we have
d
n

7 forn — 400

(4.5) Fa(M,n) ~ eq(M,d)

The following additivity property of eq (M, d) is a consequence of
prop. 10:
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Corollary . With the notation of prop. 10, one has
eq(M,d) = e4(N,d) +eq(P,d)  ford >deg P,(M).

(This will be useful later to define intersection multiplicities, cf. Chap. V,
part A.)

Here are a few more elementary properties of Fy (M) :

Proposition 11 The degree of P, (M) depends only on M and on
Supp(M) N I*(q).

We may assume that Ann(M) = 0, and thus 1/(q) = {my,.. ., M4},
where the m; are maximal ideals of A. Let q' be such that V(q') = V(q) .
We have to show that deg P,(M) = deg Py (M) . Choose an integer m > 0
such that 4™ c q', cf. Chap. I, cor. to prop. 2. We have q™" c q'" for
n > 0, hence

Py(M,mn) > Py (M, n) for n large.

This implies deg P, (M) > deg Fy (M) . By exchanging the roles of g and
q , we get the reverse inequality, hence deg Py (M) = deg Py (M) .

Remark. A somewhat similar argument shows that
deg Py(M) = degPy(M') i f Supp(M) = Supp(M’).
Hence deg P, (M) depends only on Supp( M) NV(q) .

Proposition  12. Suppose that V(q) = {mi,..., m,} , where the m;
are maximal ideals. Put A; = Ay, , M; = My, and q; = qA; . Then:

Py(M) = Zl Py (M;).

(Hence the study of P, (M) can be reduced to the case when A is local,
and q is primary with respect to the maximal ideal of A.)

The proposition follows from the Bézout-type isomorphism
Ala™ = ] Ai/at,
which shows that M/q"M is isomorphic to [[ M:/a; M

SRR




Chapter I1l. Dimension Theory

(For more details, see [Bour], Chap. VIII.)

A: Dimension of Integral Extensions

1. Definitions

Let A be a ring (commutative, with a unit element). A finite increasing
sequence

POCP C...Cor (1)
of prime ideals of A, such that p; # p;4; for0 <i<r -1, is called a
chain of prime ideals in A. The integer r is called the length of the
chain; the ideal pg (resp. p- ) is called its origin (resp. its extremity);
one sometimes says that the chain (1) joins py to p, .

The chains with origin pg correspond bijectively to the chains of the
ring A/po with origin (0) ; similarly, those with extremity p,. correspond
to those of the local ring A, with extremity the maximal ideal of that
ring. One can therefore reduce most questions concerning chains to the
special case of local domains.

The dimension of A, which is written asdim A or dim(A) , is de-
fined as the supremum® (finite or infinite) of the length of the chains of
prime ideals in A . An artinian ring is of dimension zero; the ring Z is of
dimension 1. If k is a field, we shall prove later (proposition 13) that the

polynomial ring k[X1,... , X,]is of dimension n ; it is clear anyway that
its dimension is > n, since it contains the chain of length n :
0 C (X]_) c {(X1,X2) ¢ . ¢ . . . ,Xn)

If pis a prime ideal of A, the height of p is defined as the dimension
of the local ring Ay ; this is the supremum of the length of the chains of
prime ideals of A with extremity p . If a is an ideal of A, the height of
a is defined as the infimum of the heights of the prime ideals containing
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a. If we write (a) for the set of these ideals (cf. Chap. I), then:
ht = inf ht 2
(@) = inf_hi(y) 2

[When V(a) = 0, i.e. a = A, this definition should be interpreted as:
ht(a) = dim A ]
If p is a prime ideal, we obviously have:
ht(p) + dim A/p < dim A, (3)

but equality does not necessarily hold, even when A is a local noetherian
domain (cf. [Nag3], p. 203, Example 2).

Proposition 1. If a ¢ @, we have ht(a) < ht(a’) .

This is clear.

2. Cohen-Seidenberg first theorem

Let B be a commutative A-algebra. Recall that an element z of B is
integral over A if it satisfies an ‘(equation of integral dependence™.
" +az? 1+, +a, = 0, with g; € A, (4)

for a suitable n > 1 . This is equivalent to saying that the subalgebra Alz]
of B generated by x is a finitely generated A-module.

In what follows, we assume that B contains A, and that every ele-
ment of B is integral over A (in which case one says that B is integral
over A).

Lemma 1. Suppose B is a domain. Then
A is a field < B is a field.

Suppose A is a field, and let x be a nonzero element of B . Choose an
equation (4) of minimal degree. We have a, # 0 because of the minimality
property. Then x has an inverse in B, namely:

—a; M a" ag™ L+ anmt).
This shows that B is a field.

Conversely, suppose that B is a field, and let a be a nonzero element
of A. Let x be its inverse in B, and choose an equation (4) satisfied by
x . Dividing by z"~1, we get:

X = —(a1+aa+...+a,a" 1),

which shows that x belongs to A ; hence A is a field.
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Now let p and p’ be prime ideals of A and B respectively. One says
that p’ liesover pif P NA=1p .

Proposition 2.

(a) For each prime ideal p of A , there exists a prime ideal p’ of B which
lies over p .

(b) If p’ C p”" are two prime ideals of B lying over the same prime ideal
pof A, we have p' = p” .

(c) If p’ lies over p, for p to be maximal, it is necessary and sufficient
that p’ is maximal.

Assertion (c) follows from lemma 1, applied to A/p ¢ B/p’ . Asser-
tion (b) follows from (c) applied to A,, ¢ By (we write B, for the ring of
fractions of B relative to the multiplicative set A —p ). The same argu-
ment shows that it suffices to prove (a) when A is local and p maximal,
in this case, take any maximal ideal of B for ¢’ , and apply lemma 1.

Corollary .
(i) If ph c . . . c plis a chain of prime ideals of B , then the p; = pinA
form a chain of prime ideals of A .
(ii) Conversely, let po c. . . C p, be a chain of prime ideals of A, and
let p; be lying over pg . Then there exists a chain ppC...Ch

in B, with origin pg , which lies over the given chain (i.e. we have
p; NA = p; for all i).

Part (i) follows from (b) of proposition 2. For (ii), we argue by induc-
tion on ", the case r = 0 being trivial. If pyc... Cyp,_; is lifted to
ppc- - - cPpr_1, proposition 2 applied to A/p,_; ¢ B/p;_, , shows that
there exists p, containing p;._; and lying over p,. .

Proposition 3. We have dim A=dim B. If a’ is an ideal of B, and
ifa=a n A, we have

ht@) < ht(@).

The equality dim A = dim B follows from the above corollary. As for
the inequality about the heights, it is clear when a’ is a prime ideal, and
the general case reduces to that.
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3. Cohen-Seidenberg second theorem

Recall that a domain A is integrally closed if every element of its field
of fractions which is integral over A belongs to A.

Proposition 4. Let A be an integrally closed domain, let K be its field
of fractions, let L be a quasi-Galois extension of K (Bourbaki, Algébre V
§9), let B be the integral closure of A in L , let G be the group of
automorphisms of L over K , and let p be a prime ideal of A. Then G
acts transitively on the set of prime ideals of B lying over p .

(Recall that the integral closure of A in L is the subring of L
made up of the elements which are integral over A .)

First suppose that G is finite, and let g and g’ be two prime ideals
of B lying over p . Then the gq (where g belongs to G ) lie over p ,
and it suffices to show that q' is contained in one of them (proposition 2),
or equivalently, in their union (cf. Chap. I, lemma 1). Thus let z €q’ .
The element y = [] g(z) is fixed by G ; since L/K is quasi-Galois, this
shows that there exists a power q of the characteristic exponent of K
with 42 € K . We have y? € K N B = A (since A is integrally closed).
Moreover, y? € ¢ N A = p , which shows that y? is contained in g
Therefore there exists g € G such that g(x) € q , whence x € g~ 1q, ged.

The general case: Let g and g’ lie over p For every subfield M
of L , containing K , quasi-Galois and finite over K , let G(M) be the
subset of G which consists of g € G which transformq N Mintog’' N M.
This is clearly a compact subset of G , and is non-empty according to what
has been shown. As the G(M) form a decreasing filtered family, their
intersection is non-empty, ¢ed.

Proposition 5. Let A be an integrally closed domain. Let B be a
domain containing A, and integral over A. Let py ¢ . ¢ p, be
a chain of prime ideals of A , and let p!. lie over p, . Then there exists
a chain pg c . . . ¢ p. of B, lying over the given chain, and with
extremity pl .

(In fact, the proposition is true with the hypothesis “B is a domain”

replaced by the following: “the nonzero elements of A are non-zero-divisors
|n B ”).

The field of fractions of B is algebraic over the field of fractions K
of A. Embed it in a quasi-Galois extension L of K , and let C be the
integral closure of A in L . Let g, be a prime ideal of C lying over
Pl, and let g0 ¢ . .. c g, be a chain of prime ideals of C lying over
poc...c pr. If Gdenotes the group of K -automorphisms of L ,
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proposition 4 shows that there exists g € G such that gq, = 4, ; thus if
we set g; = gq; , and p; = BN g, itis clear that the chain p, C.. Cp;
satisfies our  requirements.

Corollary . Let A and B be two rings satisfying the hypotheses of
the proposition above; let b be an ideal of B ,and leta = b n A. We
have

ht(a) = ht(b).

When b is a prime ideal, this follows from the proposition. In the
general case, let p’ be a prime containing b , and let p = p'NA . According
to the above, we have ht(p’) = ht(p) > ht(@) . As ht(b) = inf ht(p’) , we
have ht(b) > ht(a) , and together with prop. 3, we obtain the equality we
want.

B: Dimension in Noetherian Rings

1. Dimension of a module

Let M be an A -module, and let Ayy = A/ Ann(M) be the ring of scalar
multiplications of M The dimension of M , denoted by dim M, is
defined as the dimension of the ring 4, . When M is finitely generated,
the prime ideals p of A containing Ann(M) are those which belong to the
support Supp(M) of M (cf. Chap. I, §5). Hence dim M is the supremum
of the lengths of chains of prime ideals in Supp(M) [ which we also write
as dim M = dim Supp(M) |; that is to say,

dim M = sup dim A/p for p € Supp(M) .

In this formula, we can clearly limit ourselves to the minimal prime ideals
of Supp(M).

2. The case of noetherian local rings

From now on, we suppose that A is local noetherian; we write m(A), or
just m, for its radical. An ideal g of A is called an ideal of definition
of A if it is contained in m , and if it contains a power of m (which is
equivalent to saying that A/q is of finite length).

Let M be a nonzero finitely generated A -module. If g is an ideal of
definition of A, M/qM is of finite length, which allows us to define the
Samuel polynomial Py (M, n) of M , cf. Chap. Il, part B. The degree of



34 I1l. Dimension Theory

this polynomial is independent of the choice of g (Chap. Il, proposition 11);

we denote it by d(M) .
Finally, we write s(M) for the infimum of the integers n such that
there exist zq,.. . ,2, € m with M/(zy,.. , z,)M of finite length.

Theorem 1. We have
dimM = d(M) = s(M).

First a lemma:

Lemma 2. Let x € m, and let ;M be the submodule of M which
consists of the elements annihilated by x .
a) We have s(M) < s(M/zM) + 1.
b) Let p; be the prime ideals of Supp(M) such that dim A/p; = dim M .
If z¢p; forall i, wehave dimM/zM < dimM -1.
c) If g is an ideal of definition of A , the polynomial

Py(: M) = Pq(M/:cM)
is of degree < d(M) — 1 .

Assertions a) and b) are trivial. Assertion c) follows from the exact
sequences
0 - ;M - M — M —
0 - zM - M — M/zM -
to which we apply prop. 10 of Chap. II.

o o

We can now prove theorem 1 by arguing “in circle” :

i) dimM < d(M).

We use induction on d(M) , starting from the case d(M) = 0 which
is trivial. Thus suppose d(M) > 1, and let po € Supp(M) such that
dim A/pg = dim M ; we can suppose pg is minimal in Supp(M), and M
contains a submodule N isomorphic to A/pg ; since d(M) > d(N) , we
are reduced to proving our assertion for N .

Thus let ppc p1c ... c p, beachain of prime ideals in A with
origin pp . We have to show that n < d(N) . This is clear if n = 0. If not,
we can choose X € p; N m , with x ¢ Po . Since the chain p; C. .. Cp,

belongs to Supp(N/zN), lemma 2 shows that dim N/zN =dim N =1,
and that d(N/zN) < d(N) = 1, whence our assertion follows in virtue of
the induction hypothesis applied to N/zN .

i) d(M) < s(M).
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Let a= (z1,...,z,), witha cm, and M/aM of finite length. The
ideal g = a + Ann(M) is then an ideal of definition of A, and therefore
P,(M) = Py(M). According to prop. 9 of Chap. I, the degree of P,(M)
is < n,whence d(M) < s(M).

i) s(M) < dimM.

We use induction on n = dim M [ which is finite, according to i) ].
Suppose n > 1, and let p; be the prime ideals of Supp(M) such that
dim A/p; = n; the ideals are minimal in Supp(M) , whence there are
only finitely many of them. They are not maximal when n > 1 . Thus
there exists x € m , such that x ¢ p; for all ¢ . Lemma 2 shows that
s(M) < s(M/zM) + 1, and dim M >dim M/zM + 1. By the induction
hypothesis, we have s(M/xM) < dim M/xM , whence the result we want,
qed.

The theorem above (due to Krull [Kr2] and Samuel [Sa3]) is the main
result of dimension theory. It implies:

Corollary 1. We have dim M = dim M .

It is indeed clear that d(M) is not changed by completion.

Corollary 2. The dimension of A is finite; it is equal to the minimal
number of elements of m that generate an ideal of definition.

This is the equality dim M = s(M) for M = A.

Corollary 3.  The prime ideals of a noetherian ring satisfy the descend-
ing chain condition.

By localizing, we are reduced to the local case, where our assertion
follows from corollary 2.

Corollary 4.  Let A be a noetherian ring, let p be a prime ideal of A,
and let n be an integer. The two conditions below are equivalent:
(i) ht(p) < n.
(ii) There exists an ideal a of A, generated by n elements, such that p
is a minimal element of U(@@) .

If (ii) holds, the ideal aA; is an ideal of definition of A,, , whence
(i). Conversely, if (i) holds, there exists an ideal of definition b of A,
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generated by n elements z;/s, s €A p. The ideal a generated by the
xz; then satisfies (ii). [ For n = 1, this is Krull’s “Hauptidealsatz”. |

Corollary 5. Let A be a noetherian local ring, and Jet M be a finitely

generated A -module. Let p; be the prime ideals in Supp(M) such that
Afp; =dimM . If z € m(A4), we have dim(M/zM)>dim M -1 and
equality holds if and only if x does not belong to any of the p; .

This follows from lemma 2, combined with the equalities
dim M = s(M) and dim(M/zM) = s(M/zM).

3. Systems of parameters

Let A be as above, and let M be a finitely generated nonzero A -module of
dimension n . A family (z1,...,s) of elements of m is called a system

of parameters for M if M/(zy,. ., z,)M is of finite length, and if
s=n. According to theorem 1, such systems always exist.

Proposition 6. Letxi,...,zx be elements of m . Then:

dim M/(.’L'h. . ,Ik)M +k > dimM.
There is equality if and only if zy, . , Zx form part of a system of param-
eters of M .

The inequality follows from lemma 2, applied & times. If equal-

ity holds, and if Tk+1,.. ,z, ( n =dim M) is a system of param-
eters of M/(z1,. . ,Zk)M | the quotient M/(z1,. ,z,)M is of finite
length, which shows that z1,.., x, Is a system of parameters of M .
Conversely, if z1,..., Zn IS a system of parameters of M , we have

n-k >dimM/2y,..,2x)M | ged.

Proposition 7. Let x1,.., zx € m . The following conditions are

equivalent:

(@ The z; form a system of parameters for M

(b) The z; form a system of parameters for M

(c) The z; form a system of parameters for Ay = A/ Ann(M)

This is obvious.
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C: Normal Rings

1. Characterization of normal rings

A ring A is called normal if it is a noetherian domain, and is integrally
closed. For example, any principal ideal domain is normal; if K is a field,
the ring of formal power series K[[X,, . . . , X,]] and the ring of polynomials
K[X1,... ,Xn] are normal rings.

Recall that A is a discrete valuation ring if it is a principal ideal
domain and has one and only one irreducible element, up to multiplication
by an invertible element; it is a normal local ring.

Proposition 8. Let A be a Iocal noetherian domain, with maximal
ideal m . The following conditions are equivalent:
(i) A'is a discrete valuation ring.
(if) A is normal and of dimension 1.
(iii) A is normal, and there exists an element a # 0 of m such that
m € Ass(A/ad) .

(iv) The ideal m is principal and nonzero.

(i) = (ii) is trivial.

(if) = (iii) because if a is a nonzero element of m, the ideal m is the
only prime ideal of A containing aA, and aA is therefore m-primary.
(iii) = (iv) . Since m belongs to Ass(A/aA) , there exists X € A, X ¢ a4,
such that mx c a4. Thus mza™! ¢ A and za~' ¢ A. If the ideal mzg™?
is contained in m , then since m is finitely generated, we conclude that
za~! isintegral over A, which is contrary to the hypothesis of normality.
Thus there exists t € m such that y = tza~! is an invertible element of
A. Ifyis an element of m , we have y = (yza~!)u~1t, which shows that
m =tA , whence (iv).

(iv) = () . If m = tA , we have m™ = t"4 , and since (fm™ = (, for any
nonzero element y of A there exists n such thaty € m” and y ¢ m"+!
Thusy = t"u , with u invertible in A , whence yA =t"A ; since any ideal
of A is a sum of principal ideals, we conclude that any ideal of A is of
the form t" A, whence (i).

Proposition 9 (Krull). Let A be a noetherian domain. For A ¢o
be normal, it is necessary and sufficient that it satisfies the two conditions

below:
(a) If p is a prime ideal of height 1 of A , the local ring Ay is a discrete
valuation ring.
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(b) For every #€ A a# 0,and every p € Ass(A/aA), the height of p
isequal tol .

If A'is normal, the same is true for A, if p is of height 1 , we have
dim(A4p) = 1, and proposition 8 shows that A, is a discrete valuation
ring. Moreover, if a# 0, and if p € Ass(4/aA) , proposition 8, applied
to Ap, shows that A, is a discrete valuation ring, and it is in particular
a ring of dimension 1, whence ht(p) =1 .

Conversely, suppose (a) and (b) hold, and let K be the field of frac-
tions of A. Let x = b/a be an element of K ; suppose that x belongs to
each of the A, , for ht(p) = 1 ; thus we have b € a4, for ht(p) = 1, and
according to (b) this implies b € aA, for every p € Supp(A4/ad) , hence
b € ¢A. This shows that A = {] A, where p runs through the prime
ideals of A of height 1. Since the A, are normal, so is A, ged.

Remark. The proof shows that condition (b) is equivalent to the formula
A=0N A, where p runs through the prime ideals of A of height 1.

Corollary If Ais normal, and if p is a prime ideal of height 1 of
A, the only primary ideals for p are the “(symbolic powers” p(") , defined
by the formula p™ = "4, " A, (n > 1).

Indeed, the p -primary ideals of A correspond bijectively to the pA, -
primary ideals of A,,, which are obviously of the form p"Ap ,n>1, since
A, is a discrete valuation ring.

2. Properties of normal rings

For a systematic exposition (in the slightly more general framework of
“Krull rings”), we refer to [Krl s or to [Bour ], Chap. VII. We summarize
the main results.

Let A be a normal ring, and let K be its field of fractions. If p is a
prime ideal of A of height 1 , the normalized discrete valuation associated
to the ring A, is written as vy the elements x € A such that vy(z) > n
form the ideal p(™) If x £ 0, the ideal Ax is only contained in a finite
number of prime ideals of height 1; thus vp(z) = 0 for almost all p ,
and this relation extends to the elements x of K*. The valuations v,
furthermore satisfy the approximation theorem below:
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Proposition 10. Let p; , 1 <i <k, be pairwise distinct prime ideals
of height 1 of A, and let n; € Z , 1 < i< k . Then there exists x € K*
such that:

vp(x) = n; 1<i<k) and vp(z) >0 for p# P1,... ,Pk.

First suppose each n; > 0, and let § = [)(A = p;). Let B= Ag .
It is clear that the ring B is a semilocal ring, whose maximal ideals are
the p:B , and the corresponding localizations are the A, Since these
localizations are principal domains, it follows that B is also a principal
domain; if x/s with s € S is a generator of the ideal pT*+. . p;* B, we see
that x satisfies our requirements.

In the general case, we first choose y € K* such that the integers
m; = vp, (y) are <n; . Let qy,.. . , g, be the prime ideals of height 1 of
A, other than the p; , such that vy (y) are < 0, and set s; = —vg,(y) .
- - J - 7
According to the previous part of the proof, there exists z € A such that
vp,(2) = ni — m; and wv,,(2) = s; . The element x = yz then satisfies our
requirements,  ged.

An ideal a of A is called divisorial if its essential prime ideals are
all of height 1 ; by the corollary to prop. 9, it amounts to the same as
saying that a is of the form ﬂpﬁ"") , with n; >0 and ht(p;) = 1 ; thus
we have x € a if and only if x € Aand v, (X) > n; for all ¢ . We extend
this definition to the nonzero fractional ideals of K with respect to A.
The divisorial ideals correspond bijectively to the divisors of A, i.e. to
the elements of the free abelian group generated by the prime ideals of
height 1 . Every principal ideal is divisorial, and the corresponding divisor
is called principal.

A ring is called a Dedekind ring if it is normal of dimension < 1 .
Its prime ideals of height 1 are then maximal;, for such a prime p , we have
p{™ = p™. Every nonzero ideal is divisorial.

A noetherian ring A is called factorial if it is normal and its divisorial
ideals are principal (moreover it suffices that the prime ideals of height 1
are so); it amounts to the same as saying that any two elements of A have a
greatest common divisor. Every nonzero element of A can be decomposed
in the standard way:

T = wnll ek,
where u is invertible and the ; are irreducible elements; this decompo-
sition is essentially unique.
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3. Integral closure

Proposition  11. Let A be a normal ring, with field of fractions K ,
and let L be a finite separable extension of K . The integral closure B
of Ain L is a normal ring, which is a finitely generated A -module.

Let Tr(y) be the trace in the extension L/K of an element y of L .
One has Tx(y) € A if y € B since A is normal; moreover, since L/K is
separable, the K-bilinear form Tr(zy) is non-degenerate. Let B* be the
set of y € L such that Tr(zy) € A for all z € B ;since B contains a free
submodule E of rank [L : K], B* is contained in E* which is free, and
since B ¢ B* , B is a finitely generated A-module; in particular, B is a
noetherian ring, whence a normal ring, ged.

Remarks.

1) The set B* is a fractional ideal of L with respect to B , which
is called the codifferent of B with respect to A. It is easy to see that
it is a divisorial ideal of L , and thus it can be determined by localizing at
the prime ideals of height 1. We are thus reduced to the case of discrete
valuation rings, where one can moreover define discriminant, ramification
groups, etc., see e.g. [Se3].

2) When the extension L/K is no longer assumed to be separable,
it may happen that the ring B is not noetherian (and a fortiori not a
finitely generated A -module); one can find an example in [Nagl |.

D: Polynomial Rings

1. Dimension of the ring A[Xy,.. ., X]

Lemma 3. Let A be aring, let B = A[X], let p’ c p” be two distinct
prime ideals of B, such that ¥’ N A and »” n A are equal to the same
prime ideal pof A . Then p' = pB .

Dividing by pB , we are reduced to the case where p = 0. After
localizing with respect to S = A = {0}, we are reduced to the case where
A is a field, and the lemma is then obvious, since A[X] is a principal ideal
domain.

i R AR
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Proposition 12. If B = A[X], we have
dim(A) + 1 < dim(B) < 2dim(A) + 1.

If po c ... Ccpris achain of prime ideals of A, we set p} = p;B ,
pr4, = PrB + XB , and we obtain a chain of prime ideals of B of length
T + 1. Whence dim(B) > dim(A) + 1.

Now if pg C . . . ¢ p} is a chain of prime ideals of B, and if we set
p; = p;NA, the above lemma shows that we cannot have p; = pit1 = Pita.
We can therefore extract, from the sequence of p;, an increasing chain
comprising at least (s + 1)/2 elements, which is to say its length is at least
(s =1)/2;whence (s =1}/2< dim(A) , i.e. s < 2 dimA) + 1, which shows
that dim(B) < 2 dim(A) + 1.

Remark. There are examples showing that dim(B) can effectively take
any intermediate value between dim(A) + 1 and 2dim(A) + 1; see [J].
Nevertheless, in the noetherian case, we will show that

dim(B) = dim(A) + 1,
cf. prop. 13.

In the two lemmas below, we set B = A[X] .

Lemma 4. Let a be an ideal of A, and let p be a prime ideal of A
minimal in V(a) . Then p B is a prime ideal in B minimal in V( aB).

We can clearly suppose a = 0. If pB is not minimal, it strictly
contains a prime ideal q . Since pBNA = p is minimal in A , we necessarily
have g N A = p , and we obtain a contradiction with lemma 3.

Lemma 5. Suppose A is noetherian. If p is a prime ideal of A , we
have ht(p) = ht(pB) .

Let n = ht(p) . According to cor. 4 to th. 1, there exists an ideal a of
A, generated by n elements, such that p is a minimal element of V(a) .
According to the previous lemma, pB is a minimal element of V(aB) , and
cor. 4 to th. 1 shows that ht(pB) < n . The opposite inequality follows
from the fact that any chain {p,} of prime ideals with extremity p defines
in B a chain {p;B} of the same length and with extremity pB .
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Proposition | 3. If A is noetherian, we have
dim(A[X1,... , X,]) = dim(A) + n.

It obviously suffices to prove the result for A[X]. We already know
that dim(A[X]) > dim(A) + 1, and it amounts to prove the reverse in-
equality. Thus let p; C . .. C p.. be a chain of prime ideals of B = A[X] ,
and let p; = p;N A. If the p; are distinct, we have r < dim(A) . If not, let
j be the largest integer such that p; = p;;; . According to lemma 3, we
have p/ = p;B , whence (lemma 4) ht(p) = ht(p;) , and since ht(p}) >J,
we have ht(p;) > J . But p;C pj+2c ... c pris achain of prime ideals
in A. Thus r — (j + 1) + ht(p;) < dim(A), whence r ~ 1 < dim(A) , ged.

2. The normalization lemma

In what follows, k denotes a field. A k-algebra A is called finitely gen-
erated if it is generated (as a k-algebra) by a finite number of elements;
i.e. if there exists an integer n > 0 and a surjective homomorphism

k[Xl,... 7Xn] +A.

Theorem 2 (Normalization lemma). Let A be a finitely generated
k-algebra, and let g; ¢ . . . ¢ a, be an increasing sequence of ideals
of A, with a, # A. Then there exist an integer n > 0 and elements
z1,... ,x, Of A, algebraically independent over k , such that
a) A is integral over B = k[zy,. .., X,] ;
b) for each i, 1 <i < p, there exists an integer h(i) > 0 such that
a; N B is generated by (z1,.. ., zp()) -

We first observe that it suffices to prove the theorem when A is a
polynomial algebra k[Y3, . . ., Y;»]. Indeed, we can write A as a quotient
of such an algebra A’ by an ideal ag ; write a} for the preimage of g; in
A’ and let z/ be elements of A’ satisfying the conditions of the theorem
relative to the sequence a5 caj C ... c@a, . Then it is clear that the
images of $;—h(0) in A, where i > h(0) , satisfy the desired conditions.

Thus, in all that follows, we suppose that A = k[Yi, ..., Yn], and we
argue by induction on p .

A) p=1.
We distinguish two cases:

Al)  The ideal a1 is a principal ideal, generated by z; € k .
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We have z; = P(Y3,...,Y,,),where P is a non constant polynomial.
Let us show that, for a suitable choice of integers r; > 0, the ring A is
integral over B = k{z1, z3,.. ,Zm] , With

3 = Y-Y  (@<ism)

For this, it suffices to show that Y; is integral over B But Y1 satisfies
the equation

P(Y1,z2+Y{?, ... ,2;m +Y{™) —21 = 0. (%)
If we write P as a sum of monomials
P = Zapyﬁ where p=(py,... Pm), and a, #0,
equation (x) becomes

Z al’Ylp1 (332 +Y7)P (-’lfm + erm)pm - I =0

1
Set f(p)=p1+ T2P2 + . . + TmPm, and suppose the r; are chosen such
that the f(p) are all distinct (for example, it suffices to take r; = s*, with
s > sup(p;) ). Then there is one and only one system p = (p1, . . . ,pm)

such that f(p) is maximum, and the equation is written as:

oY ? + 3 Q@Y = 0
i<f(p)

which shows that Y; is indeed integral over B

Hence k(Y1,...,Yy) is algebraic over k(z1, . . ., zy), which im-
plies that the z; are algebraically independent, and B is isomorphic to
k[X1,... » Xm]. Moreover, a;NB = (z,) ; indeed, every element g € a;NB
can be written as g = z1q ,with ¢ € AN k(z1, . ,Zm) , and we have
An k(z1,...,%m) = kjz1,... ,zp] since this ring is integrally closed;
whence g’ € B, which completes the proof of properties a) and b) in
this case.

A2) The general case.

We argue by induction on m , the case m = 0 (and also m = 1) being
trivial. Clearly we can suppose qa; # 0. Thus let z; be a nonzero element
of a7 ; this is not a constant since a; # A. According to what has been
shown, there exist ts,. . -, L, Such that z;, ts,. . , t,, are algebraically
independent over k , that A is integral over C = k[zy,t2, . . ., t,], and
that 2,4 N C = 21C | According to the induction hypothesis, there ex-
ist elements z,. . . , Ty, of k[ta, . . . t,,] satisfying the conclusions of the
theorem for the algebra kfts, . . . , tm) and for the ideal a; N k[t2, . . ., ty,].
One checks that xi, x9,. . , zm satisfy our requirements.

B) Passing fromp-~1top.

Let t,... . tm b€ elements of A satisfying the conditions of the the-
orem for the sequence a; C .. C ap_1, and let r = h(p = 1) . Accord-
ing to A2), there exist elements z,41,. . ,2Zm Of k{try1,.. ., tn] satisfy-
ing the conclusions of the theorem for k[tr+1; . . | t,,] and for the ideal
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ap Nk[trs1,.. . » t#] . Setting z; = ¢; for i < r, we obtain the family we
want, qed.

3. Applications. I. Dimension in polynomial algebras

Not&ion. If A is a domain which is an algebra over a field &, the
transcendence degree over k of the field of fractions of A is written as
alg dim, A .

Proposition 14. Let A be a domain which is a finitely generated
algebra over a field k . We have

dim(A) = alg dim, A.

According to th. 2, there exists a subalgebra B of A which is isomor-
phic to a polynomial algebra k[X7y, . . ., X,,] such that A is integral over
B . According to prop. 3, we have dim(A) = dim(B) , and according to
prop. 13, we have dim(B) = n ; moreover, if we let L and K denote the
fields of fractions of A and B , we have

alg dim, L = algdim; K = n,
since L is algebraic over K Whence the proposition.

Variant. Instead of applying prop. 13, we can apply th. 2 to a chain of
prime ideals of A. We deduce that the length of this chain is less than or

equal to n (with B = k[Xy,... , X)) and we conclude as above.

Corollary 1. Let A be a finitely generated algebra over a field k , and
let p be a prime ideal of A . We have

dim(A/p) = algdim,(A/p).

This is obvious.

Corollary 2 ( “Nullstellensatz”). Let A be a finitely generated alge-
bra over a field k , and let m be a maximal ideal of A. The field A/m is
a finite extension of k .

Since m is maximal, we have coht(m) =0, and we apply corollary 1;
this shows that A/m is algebraic over k; since it is finitely generated, it
is a finite extension of k .
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Proposition 15. Let A be a domain which is a finitely generated
algebra over a field k and let n = dim(A) . For every prime ideal p of
A, we have:

ht(p) + dim(A/p) = n, i.e. dim(A4p) + dim(A/p) = dim(A).

According to theorem 2, there exists a subalgebra B of A, isomorphic
to k[Xl, ..., Xn], such that A is integral over B , and

pﬂB = (Xl,...,Xh).
Set p’ = pn B. Since p’ contains the chain
OcXlhc..c Xl ..,Xn),

we have ht(p’) > h , and the opposite inequality follows from the fact
that p’ is generated by h elements, whence ht(p’) = h . Moreover,
B/p' = k[Xn41,... ,Xn], which shows that dim(B/p’) = n = h. Since
A is integral over B , and B is integrally closed, the Cohen-Seidenberg
theorems show that ht(p) = ht(p’) and dim(A/p) = dim(B/p’) . Hence
the proposition.

Corollary 1. The hypotheses and notation being those of theorem 2,
we have
ht(a;) = h(i) for i=1,...,p.

This is in fact a corollary of the proof.

A chain of prime ideals is called saturated if it is not contained in
any other chain with the same origin and extremity (in other words, if one
cannot interpolate any prime ideal between the elements of the chain); it is
called maximal if it is not contained in any other chain, or, what amounts
to the same, if it is saturated, its origin is a minimal prime ideal, and its
extremity is a maximal ideal.

Corollary 2.  Let A be a domain which is a finitely generated algebra
over a field. All the maximal chains of prime ideals of A have the same
length, which is dim(A) .

Let poCPp1C ... ¢ pp be a maximal chain of prime ideals. Since it is
maximal, we have po = 0, and ps is a maximal ideal of A. We therefore
have dim(A/py) = dim(A) and dim(A/pr) = 0. Moreover, since the
chain is saturated, one cannot interpolate any prime ideal between p;_;
and p; ; thus dim(A/p;—1)p; = 1, and by prop. 15 we have:

dim(A/pi_1) ~ dim(A/p;) = 1.
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As dim(A/po) § dim(A) and dim(A/pp) = 0, we deduce h = dim(A),
qed.

Remarks.
1) Corollary 2 can be split in two parts:
a) For every maximal ideal m of A, we have dim{A,,) = dim(A) .
b) All the maximal chains of prime ideals of A,,, have the same
length.
We will see in the following chapter that property b) is true, more
generally, for every local ring which is a quotient of a Cohen-Macaulay
ring (and in particular of a regular local ring).
2) Corollary 2 can also be deduced directly from th. 2.

4. Applications. Il. Integral closure of a finitely
generated algebra

Proposition  16. Let A be a domain which is a finitely generated
algebra over afield k , let K be its field of fractions, and let L be a finite
extension of K . Then the integral closure B of A in L is a finitely
generated A -module (in particular it is a finitely generated k -algebra).

[ Compare this result with prop. 11: we no longer suppose that A is
a normal ring, nor that L/K is separable. |

According to th. 2, A is integral over a subalgebra C isomorphic to
k[X1,...,Xn], and B is obviously the integral closure of C in L . It thus
suffices to do the proof when A = g[X;, ..., X,|. Moreover, being free
to extend L , we can suppose that the extension L/K is quasi-Galois; if
we write M for the largest purely inseparable extension of K contained
in L , the extension L/M is separable. Let D be the integral closure
of A in M ; if we know that D is finitely generated as a module over
A , proposition 11, applied to L/M , shows that B is finitely generated
as a module over D , whence over A. Finally, we can thus suppose that
the extension L/K is purely inseparable. The extension L is generated
by a finite number of elements y; , and there exists a power g of the
characteristic exponent of k such that

yf €K = k‘(Xl,. .. ,Xn).
Let ¢y,..., cm be the coefficients of each of the yg , expressed as rational
functions in the Xj The extension L/K is then contained in L'/K ,
with:
L= K(XT ..., X7, K=k ...,
The integral closure of A = k[X1, ..., X,]in L' is clearly equal to

B' = K[X{,.. ,x3],
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and B’ is a free A -module with finite basis. Hence B is finitely generated
as a module over A, ged.

Remark. In the terminology of [EGA], Chap. 0, 23.1.1, proposition 16
means that every field is “universally Japanese”. According to Nagata,
every Dedekind ring of characteristic zero (in particular Z ), and everv. local
noetherian complete ring, is universally Japanese (cf. [EGA ], Chap. IV,
7.7.4, and [Bour], Chap. IX, §2).

5. Applications. Ill. Dimension of an intersection in
affine space

We want to show that, if V and W are two irreducible subvarieties of an
affine space, and if T is an irreducible component of V 1 W , we have the
inequality:

codim(T) < codim(V) + codim(W).

In algebraic language, this is expressed as:

Proposition 17.  If p’ and p” are two prime ideals of the polynomial
algebra A = k[Xy,.. ,Xn], where k is a field, and if p is a minimal
element of V(p' + p”) , we have

ht(p) < ht(p’) + ht(p").

We first prove two lemmas:

Lemma 6. Let A’ and A” be domains which are finitely generated
algebras over k . For every minimal prime ideal p of A’ ®x A” , we have:
dim(A” @, A"/p) = dim(A’ @, A”) = dim(4") + dim(4").

(In geometric language: the product of two k-irreducible varieties of di-
mensions  and s decomposes into irreducible varieties of dimension
T + S.)

Let B’ and B” be k-polynomial algebras of which A’ and A” are
integral extensions; let K’ , K” , L', L" be the field of fractions of A’ ,
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A", B’ , B”. We have the diagram of injections:
0 — L' ® L' —— K' ® K"

I I

0 Bl ®k BII A’ ®k Au

I I

0 0
As K'is L' -freeand K" is L" -free, K’ ®, K" is L' ® L” -free; in
particular, it is a torsion-free module over the polynomial algebra B'&yB" .
The intersection of the prime ideal p with B’ @, B” is 0, and the Cohen-
Seidenberg theorems show that

dim(A’ ® A”/p)

dim(B’ ® B”)
dim( B’) + dim( B”)
dim(A’) + dim(A"),

ged.

Lemma 7. Let A bea k-algebra,let C = A®A,andlet ¢:C — A
be the homomorphism defined by ¢(a ® b) = ab .
(i) The kernel p of ¢ is the ideal of C generated by the elements

1@a—-a®1, foracA.
(ii) If p’ and p” are two ideals of A, the image by ¢ of the ideal
FRA+AQP

is equal to p' + p” .

Itis clear that 1 ®a -a ® 1 belongs to o for every a € A . Conversely,
if Y a;b; = 0, we can write:
> ai®b = Y (a@l-10a)(10b),

which shows that Y  a; ® b; belongs to the ideal generated by the elements
(a; ®1 ~ 1 ® a;) . Assertion (ii) is trivial.

We now proceed to prove the proposition. Set
C=A®:A, D=A/p @ A/p', t+ = PRA+A®D".
We have the exact sequence:
0—t—C—D=—0.

Let P = ¢~ t(p); it is obviously a minimal prime ideal of V(0 +r) , and
its image ¢ in D is thus a minimal prime ideal of V(?') , where we write
o’ for the image of » in D. But lemma 7 shows that ? is generated

=
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by the n elements X, ® 1 —1 ® X;; thus we see that ht(Q) <n . Let
Q¢ be a minimal prime ideal of D contained in £ : we have a fortiori
ht(2Q/90) < n . But according to lemma 6, we have

dim(D/9) = dim(A/p’) + dim(A/p");

since
ht(2/Q) = dim(D/Qo) ~ dim(D/Q),
we find
n > ht(Q/Qg) = dim(4/p") + dim(A/p") dim(A/p),
hence
n—=dim Alp<n —dim A/p' +n = dim A/p”,
i.e.
ht(p) < ht(p’) + ht(p”),
ged.

Remark. The proof above consists in replacing the triple (A; p’,p") by
the triple (A ®x A; 9, t) . This is called reduction to the diagonal (it is
the algebraic analogue of the set-theoretic formula Vii W = (VxW) NA).
We will see in Chap. V that this method applies to much more general cases,
and will allow us to extend the preceding proposition to all regular rings.



Chapter IV. Homological Dimension
and Depth

A: The Koszul Complex

1. The simple case

Let, A be a commutative ring (which is not assumed to be noetherian for
the time being) and let z be an element of A We denote by K{z), or
sometimes K#(z) , the following complex:
Ki(z)= 0 ifi#0,1
Kl(I) = A;
K()(:E) = A;
the map d: K;(r) = Ko(x) is the multiplication by z.
In what follows, we identify Kg(z) with A, and we choose a basis e,
of the A-module K;(z) such that d{e,} = 1. The derivation
d: Ki(z) — Ko(x)
is thus defined by the formula:
d{ae,) = az, ifac A,
If M is an A-module, we write K(x,M) for the tensor product
complex K(s) &4 M. Then
Klz,M), = 0 if n+#0,1,
Kz, M)y = Ko(z) @4 M = M,
K(z, M)y KloaM =M,

and the derivation
d: K(z,M); — Kz, M}
is defined by the formula
dle; ® m) = zm  where m e M.
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The homology modules of K(x, M) are:
Hy(K{(z),M) = M/zM,
Hi(K(z),M) = Anny(z) = Ker(zpr : M — M)
Hi(K(z),M) = 0 ifi#0,1.

We denote them by Hi(z, M)

Now let L be a complex of A-modules. The homology modules of

the complex K(z) ®4 L are related to the homology modules of L in the
following way:

Proposition 1. For ewery p > 0, we have an exact sequence:
0 — Ho(z, Hy(L)) — Hy(K(z) @4 L) — Hi(x, Hy_ (L)) — 0.

The natural injection A — K(x) gives an embedding of complexes
L=A®sL - K{z)24L
Similarly, the natural projection K{z) — Ki(z) = A gives a homomor-
phism of complexes
K(z)®aLl — L1
here, L[-1] is the complex deduced from L by a shift of -1 (i.e.
L{-1], = L, ), together with a sign change on the boundary map.
We thus get an exact sequence of complexes
0 - L -K@S) ®4L — L[-1] — 0,
hence a homology exact sequence:
d
9, Hy(L) — Hy(K(z) ®a L) — Hy(L{-1]) 5 Hpa(L).
The boundary operator d maps H,(L[-1]) = Hp-1(L) into Hp-1(L); a
simple computation shows that it is equal to scalar multiplication by ¥
Hence the above exact sequence splits into short exact sequences:
0 —)Xp—y_Hp(K(:z:) ®aLl) = Y1 — 0,
with
X, Coker(z : Hy(L) — H,(L)) = Hp{zx, Hx(L)},
Y, Ker(z . Hy(L) — p( )} = Hilz, Hy(L)),

ged.

A complex L = {L,), n >0, js called an acyclic complex on M if
Hy(L)=0for p>0and H, (L) = M we thus have an exact sequence:

- Ly Lp1—= o Li—Lo—=M—=0.
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Corollary If L is an acyclic complex on M , and if T is not a zero-
divisor in M (i.e. Ker(zps) = 0), then K(z) ®4 L is an acyclic complex
on M/zM .

Indeed, the proposition shows that one has Hp(K(z)®4 L) = 0 for
p > 1, that H(K(x) ®,4 L) = Hi(K(z) ®4 M) = Ker(z,,) = 0, and that
Ho(K(z) @4 M) is equal to M/zM .

2. Acyclicity and functorial properties of the Koszul
complex

If x = (z1,. ,%,) is a family of elements of A, we let K(x), or
K(zy,, z,), denote the tensor product complex

K(x) = K(z1) ®4 K{z2) 94 ®4 K(z,).

Then Kp(x1, , z.)is the free A -module generated by the elements

e ® ® &, , 1 < i < < 14, , where e; =€z, and in particular it g
isomorphic to AF(AT) , the p-th exterior product of AT

If M is an A -module, we write K(z,, ,z,; M), or K(x, M), for
the tensor product complex
Kzt ,2,)@a M = K(x)®@4 M.
The module K,(x, M) is thus a direct sum of modules
€, ®4 B4 €, ®4 M, where §; < ip < < i,
and the derivation
d: Kp(x,M) = K,.1(x, M)
is given by the formula: ()
P
dles, ® - e, @m)= Y (~1)e;, 8. 08, 8 @y, ® (ziym).
k=1
In what follows, we denote by H,(x, M) the p-th homology module
of the Koszul complex K{x, M) We have:
Ho(x,M) = M/(z1,... ,2,)M = M/xM,
He(x,M)={m €M : z;m =0 for all i}.

Remark. When one wants to mention the ground ring A, one writes
KA(z), K4(x,M) | Hj;‘(x, M}, etc. Note however that K(x, M) and

™) We are using here the topologists' convention that a symbol below « = = o
to be omitted. For instance, for p = 2, one has

d(ei, & iy & m) = —€; ® (:::,-zm) te,® (s, m).
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Hp(x, M) depend only on the abelian group M and on the endomorphisms
(z;)m ; they do not depend on A.

The two propositions below are concerned with the case where these
homology modules are zero for p > 0.

Proposition 2.  Under the preceding hypotheses, if for al {,1 <i<r,
r; is not a gero-divisor in M/(z1,... ,2;-1)M , then Hy(x, M) = 0 for
p>o.

The proposition is true if r = 1 : saying that Hi(z1, M) = Annps(z1)
is zero iS equivalent to saying that x; is not a zero-divisor in M

Thus suppose that r > 1 and that the proposition has been
proved for the complex K(Z1, , z,_;; M) , and let us prove it for
K(zy, » ¥y M ) The canonical map from Ko(zy,. yZr—1; M) into
Hy(xy yooo@pm13 M) = M/(z1 ... 2,-1)M defines K(z1,... ,2,_1; M)
as a complex over M/(xy,. Tr—1)M | and the corollary to proposition 1
can be applied.

Proposition 3. If, in addition to the preceding hypotheses, we suppose
that A is noetherian, that M is finitely generated, and that the z; belong
to the radical r(A) of A, then the following properties are equivalent:
a) Hp(x, M) = 0 for p > L

b) Hi(x,M) = 0.

c) For every i , 1 < i £ r, z; is not a zerodivisor in

M/(il?h- )xi—l)M'

It remains to show that b) = c) , which has aready been done if
r = 1. Assume the result for K(x', M) where x’ = {#1,.,z,-1) and
let us prove it for K(x, M) By the corollary to proposition 1, we have an
exact sequence

0 — HU(ZBT,Hl(X’,M)) — H](X,M) — Hi(zy, Ho(x, M}) ~— 0.
Hence Hi(x, M) = 0 = Hy(X', M)/z.Hi(x', M) = 0; by Nakayama’s
lemma, this shows that Hy(x’, M) = 0 and by the induction hypothesis

we have property c) for 1 < i < r Moreover, the same exact sequence
shows that Hy(z,, Ho(x’, M)) = 0, which is property c) for i = r

Corollary 1.  Condition c) does not depend on the order of the sequence
x=(51,... ,z,}.

Remark. The correspondence between M and K{x, M) is obviously
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functoria for a given x, and the functor M ~ K(x, M) ig exact. If
0—=M —=M— M" -0 is an exact sequence, we obtain an exact
sequence of complexes

0= K(x,M) = K{x,M) - K(x,M") -0
and an exact sequence of homology:
0 = H(x,M') - H(x,M)—= H.(x, M ")
- He_i(x,M") — - H(x, M)
- Ho(x, M) — Hox,M) — Hy(x,M") 0.
Moreover, Ho(x, M) is naturaly isomorphic to A4/x®4 M (where x
denotes, as usual, the ideal generated by xy,., z, ). This isomorphism
of functors extends in a unique way to a natural transformation
¥ 1 Hi{x, M) — Torl{A/x, M),
cf. [CaE], Chap. III.

Corollary 2. Suppose that conditions a), b), c) of proposition 3
are satisfied for A (i.e., for 1 < ¢ <, z; is not a zero-divisor in
Az, ,zi-1)A ). Then the map

w1 Hi(x, M) — Tor (A/x, M)

is an isomorphism for every i and for every A -module M (not necessarily
finitely generated).

This follows from proposition 3 (applied to the module A), since it
implies that K(x) is an A-free resolution of A4/x.

Smilally, we have natural maps
¢ Extyh(A/x, M) — H'(Hom4(K(x}, M)).

Since Hom4 (K (x), M) is isomorphic (with a dimension shift) to K(x, M)
(autoduality of the exterior algebral), we have

H'(Homa(K(x),M)) & H,_;(x,M).

Hence ¢ may be viewed as a homomorphism of Ext}(A/x, M) into
H._;(x, M) ; for i = 0, this gives the natural isomorphism between
Homa(A/x, M) and H,(x, M)

Corollary 3.  Under the same hypothesis as in cor. 2, the map
¢ : Bxt'y (A/x, M) — H,_i(x, M)
isan isomorphism for every { and for every M

The proof is the same.
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Now let B be the polynomial ring in r in_determmates X, X,
with coefficients in A, ie. B = A[Xy,,X,] Define B-module struc-
tures on A and M by the equalities: X;a =0 if a € A and X;m = r;m
if m e M Then KB(X,;,., X,) gives a free resolution of A and

KA(x, M) = KB(X,,... , X M);
thus we have natural isomorphisms:
Hi(x, M) = Tor?(4, M) = Ext’, (4, M).
whence

Proposition 4.  The annihilator of H;(x, M), —oo < i < +00 , contains
x and Ann(M).

Indeed, we have
Anng(Tor?(A, M)) D Anng(A4) + Anng(M),
but Anng(A) = (X1,. ,Xr) and
Anng(M) > Anna(M) + (X1 = zy,. , X, —zr).

Finally, one shows without difficulty that if S is a multiplicative subset
of A K(x, Ms) = K(x, M)g and H(x, Mg) = H(x, M)g Similarly if A
is noetherian and M is finitely generated, and if the A-modules are given

the x-adic filtration, then K(x, M) = Km) , H(x, M) = H@) ;
the relations between K(x, M) and the Koszul complex of gr(M) will be
studied in the next section.

Remark. For more details on the Koszul complex K{x, M), see Bour-
baki, Algébre, Chap. X,§9, and [Eis], §17.

3. Filtration of a Koszul complex

In this section, A is local noetherian, the ideal x = (z;,., x,) is con-
tained in the maximal ideal of A , and M is a finitely generated A -module
such that (M /xM) < cc.

The A -modules Hy(x, M) are finitely generated and they are anni-
hilated by x + Ann(M) , cf. prop. 4, hence they have finite length, and we

may define the Euler-Poincaré characteristic
r

X( M) = ) (=1)° £(H,(x, M),
p=0
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On the other hand, the Samuel polynomial £ (M} has degree < r,
and we have

Py(M,n) = ex(M,'r}% + Q(n), with deg@ < r,
where e, (M,r) = A"P, (M), cf. Chap. II, part B, §3.

We want to compare the integers x(x, M) and e, (M, r) :
Theorem 1.  x(x, M) = ex(M,r).

Corollary We have x{x, M) > 0 if dim(M) = r and x(x, M) = 0 if
dim(M) < r

This follows from the properties of ex(M,r) proved in Chap. Il,
part A.

Remark. Note that x(x, M) is > (. This is a general property of
Koszul complexes in noetherian categories, cf. Appendix [l. More generally,
we shall see that the “higher Euler-Poincaré characteristics”

xi(%, E) = Y (~1)P #(Hiyp(x, M))
p20
are > 0 for every | > (.

Proof of theorem 1. We do it in several steps:

(3.1) Filtration of the complex K = K(x, M)
Write K as the direct sum of its components K, = K,(x, M) For
every i € Z , define the submodule F*K), of K, by:

'K, = x'"PK,, where x? = Aif j < 0.

The direct sum F*K of the F*K, is a subcomplex of K We thus get a
decreasing filtration:

K=F'K>F © K DO
which is an x-good filtration of K

(3.2) Let gr(A) be the graded ring associated with the x-adic filtration
of A. We have gro(4)= A/x and gr;{4) = x/x* ; denote by &,. ¢,
the images of xy,. .z, in gry{4) and put £ = (&,. &) Let gr(\m)
be the graded module associated with the x-adic filtration of M;it is a
graded gr{A) -module. Then:
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The graded complex gr(K) = @, F*K/F™K is isomorphic to the
Koszul complex K(£, gr(M))

This is clear.

(3.3) The homology modules Hy(£,gr(M)) have finite length.

Indeed, they are finitely generated modules over gr(A)/é = A/x,
and they are annihilated by the ideal Ann(M). By assumption, the ring
Af(x + Ann(M)) is artinian.

(34) There exists m > 0 such that H,(F*K/F*t1K) =0 for all i > m
and gll p

This follows from (3.3) since Hp(€, gr(M)) is the direct sum of the
HP(F’;K/FﬁIK)

Let us now choose m as in (3.4}, with m > T

(3.5) We have Hp(F’K/FHjK):O forpeZ, i>m, j =0,

This follows from (3.4) by induction on Jj , using the exact sequence
of complexes:

0 —» FIK/FPYEK L PRJFYYEK o PR/ LK S 0.

(3.6) We have Hy(F*K) =0 for i > m,and all p
Let Z" (resp. Bi) denote the module of cycles (resp. boundaries) in
F'K, By (3 5) we have H,(F*K/x?F*K) =0 for every j > 0. Hence:
Z, C B +x'F'K, foral 7 > 0.
This means that Z: is contained in the closure of B, for the x-adic

topology of #°Kp , hence in BY (cf. Chap. I, cor. 4 to theorem 1). This
shows that H,(F*K) = 0.

(3.7) If i > m, the natural map Hp(x,M) = H,(K) — H,(K/F'K) is
an isomorphism for every p

This is a reformulation of (3.6).

(38) We have x{(x,M) = x(K/F'K)if i > m.
By (3.7), we have
x(x, M) = Z(»l)pE(Hp(K/FiK)).
P

Note that X /#*K has finite length. Tt is well-known that, if a complex
has finite length, its Euler-Poincark characteristic is the same as that of its
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homology. Hence:
Y COPUHLKE/FK)) = 3 (-1P UK, /F'K,) = x(K/F'K),
P p

hence x(x, M) = x(K/F'K)

(39) We have x(x, M) = Zp(—l)P(;) M/ PM)ifi>m

This follows from (3.8) since Kp/F'-'Kp is isomorphic to a direct sum
of (;) copies of M/x*"PM .

(3.10) End of proof
If 1 is large enough, we may rewrite (3.9) as

Z( 1)”@)) (M,i-p).

A simple computation shows that the right side is equal to A" Py {}M), ged.
For future use; let us record:

Theorem 1'. If Hy(§,gr(M))=0 for all p> 0, then Hy(x, M) = 0
for all P > 0.

Indeed: the same argument as above shows that IZ,(F*K/F*t1K) = 0
for dl P > 0 and al i; hence also H,(F*K/F*'7K) = 0 for p > 0,
i,j = 0.Asin (3.6}, this implies H,(F*K) =0 for p >0and al i >0
by choosing i = 0, one gets Hp,(K) = 0 for p > 0, ged.

Remark. The proofs of theorem 1 and theorem 1' could be some-
what shortened by using the spectral sequence associated to the filtration
{F'K) , and showing (as in (3.6)) that it is convergent. This method was
the one used in the original French text.

4. The depth of a module over a noetherian local ring

In this section, A is a noetherian local ring, with maximal idea m and
residue field &k = A/m . All A -modules are assumed to be finitely gener-
ated

Let A be such a module. An M-sequence is defined ag a sequence
a = {ay,., ap} of elements of m which satisfy the equivalent three con-
ditions:
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a) For every i, 1 <4< p, g is not a zero-divisor in M/a,_ M , where

a) = 0 and a1 = (a.l,. ,a,-_l).

b) K{(a, M) is an acyclic complex (in dimension > 0 ).
C) Hl(a,M) = 0.

The equivalence of these conditions has already been proved (proposi-
tion 3); in particular, these conditions do not depend on the order of the se-
quence. If we let M, denote the module M/a,M | and if b= {b1,, b}
is an M, -sequence, the sequence {a, b} = {a1,., @, b1,, b} is an
M-sequence.

Such a sequence b exists (and has at least one element) if and only if
m contains an element which is not a zero-divisor in M, , which is to say
if and only if m is not associated to M, .

This last condition is equivalent to the equality Hom®(k, M,) = 0,
and it depends only on the number p and not on the sequence a, as follows
from:

Proposition 5.  Under the above hypotheses, Ext%(k, M) is isomorphic
to Hom(k, M,) and Ext%(k, M) is 0 for i < p.

The proposition is true if p = 0. Thus suppose it has been proved
for every A -module N and every N-sequence of fewer than p elements,
and let us show it in our case, Since {ag,., @p} is an M; -sequence,
we have Hom(k, M,) & Ext?~}(k, My}, and it remains to show that
Ext”'l(k, M) 2 ExtP{k, M) The endomorphism of M defined by g4
gives rise to the exact sequences:

0-M3M—oM—0
and
i — Ext? "k, M) = Ext?"l(k, My) — ExtP(k, M) 2L ExtP(k, M).
But Ext”_l(k, M) = Hom(k, M,_,) = 0 and the annihilator of
Ext?P(k, M) contains Ann(k) = m and hence g, ; the homomorphism from

Ext?~!(k, M;) into Ext?(k, M) is therefore an isomorphism. A similar ar-
gument shows that Ext*(k, M) = 0 for i < p

Now suppose M # 0 Any M-sequence can be embedded in a maxi-
mal one: if not there would exist an infinite sequence (a4, az,.) having
property a) above, and the corresponding sequence of ideals a; C a; C
would be strictly increasing.

Hence there exists a maximal M -sequence (al,. , a;); by proposi-
tion 5 we have

ExtY(k, M) = 0 for i <p,
and Extf (k, M) = Homu(k, M;) # O.
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This shows that the length g of the sequence depends only on M . In
other words:

Proposition and Definition 6. All the maximal M-sequences have
the same number of elements, say p Every M-sequence ¢an be extended
to a maximal M-sequence. The integer p is the infimum of the n such
that Ext3(k, M) #0; it is called the depth of M and is denoted by
depth, M

(In the original French text, the depth was called “codimension ho-
mologique”; this terminology is not used any more.)

Corollary  With the above notation, cne has
depth, M; = depth, M - i.

Remark. It is sometimes convenient to extend definition 6 to the trivial
module 0 by putting depth, 0 = +00

Let us again assume that M # 0

Proposition 7.
{1} Every M-sequence can be extended to a system of parameters of M
(i) One has depth, M < dim A/p for every p € Ass(M)

The proof is by induction on 2 = depth, M
Let {a1,.-, ap) be a maximal M-sequence. We have a1 ¢ p for
every p € Ass(M), cf. Chap. I, prop. 7, hence
dimM/aM = dimM - 1,
cf. Chap. Il1, eor. 5 to th. 1. By induction on i , we see that
dim{M/(ay,... ;e)M) = dimM —i for i=1,...,p,

which implies (i), cf. Chap. I, prop. 6.
Let now p be an element of Ass(M).We have an exact sequence

0 — Hom(A/p, M) =% Hom(A4/p, M) — Hom(A/p, M /a1 M).

Since p belongs to Ass(M) , Hom(A/p, M) is nonzero. By Nakayama's
lemma, the same is true for Hom{A/p, M)/a; Hom(A/p, M) , hence also
for Hom(A/p, M/a; M) This means that there is a nonzero element of
M/ay M which is annihilated by p + ai1A. By Chap. I, proposition 7,

p+ a;A is contained in a prime ideal q belonging to Ass{M /a1 M) The
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induction hypothesis shows that dim A/q > p —1.But one has
dimA/q = dimA/p - 1,
since AZq = (A/p)/a1(A/p) . and a; ¢ p Hence dim Alp > p, qed

Proposition 8.  (cf. {Bour], Chap. X, §1, prop. 1) Let
0-+M-—-M-M -0
be an exact sequence of A -modules. Define:
p = depth, M, p’ = depth, M’, p"” = depth, M”.
Then one has either p’=p <p", ar p=p"<p', or p"=p'-1<p

This follows from the exact sequence

— Bxt’, 'k, M") = Ext’(k, M') = Extly(k, M) — Ext, (k, M") >
by considering the first term (on the left) which is # 0, and noticing that
the next one is nonzero too.

Propo:%itionA 9. Let A bethe completion of A for the m -adjc topology,
and M =A®4 M. Then:

i) depth; M = depth, M

ii) Every maximal M-sequence is 3 maximal ~-sequence

Assertiop i) follows from the fact that ﬁ@A Extftl(k, M) is isomorphic
to Ext’; (k, M)

To prove b), consider a maximal M-sequence a = {g;, , a} With
the same notation as above, we have the exact sequences

0= Mi_1 25 Moy = M; =0
and therefore also
O-ﬂMi_li)M,_l—}Mi—}O
Hence a is an M -sequence, which is maximal because of i)

B: Cohen-Macaulay Modules

(See [Bour], Chap. X, §2 and also [H2], [BrH].)

Let A be a noetherian local ring, with maximal ideal m = m(A) ; let
E be a nonzero finitely generated A -module.
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1. Definition of Cohen-Macaulay modules

By prop. 7, for every p € Ass(E), we have
dim{A/p) > depth(E).

Since dimE = sup dim(A/p) for p € Ass(E), we have in particular
dim E > depth E

Definition 1. The module E is called a Cohen-Macaulay module if
dim(E) = depth(E).

The ring A is called a Cohen-Macaulay ring if it is a Cohen-Macaulay
module when viewed as a module over itself.

Examples.

1) An artinian local ring, a local domain of dimension], are Cohen-
Macaulay rings.

2) A local integrally closed domain of dimension 2 is a Cohen-
Macaulay ring. Indeed, if z is a nonzero element of M | the prime ideals
p of Ass(A/xA) are of height 1, thus distinct from m since dim A = 2.

We thus conclude that depth(A/zA) > 1. whence depth(A) > 2, which
shows that A is a Cohen-Macaulay ring.

Proposition 10.  For E to be 8 Cohen-Macaulay module, it is necessary
and sufficient that the A -module E is a Cohen-Macaulay module.

This follows from the formulae
depth(E) = depth(k) and dim(E) = dim(E).

Proposition 11. Let A and B be two noetherian local rings and let
¢ : A — B be a homomorphism which makes B into a finitely generated
A-module. If E is a finitely generated B-module, then E is a Cohen-
Macaulay A -module if and only if it is a Cohen-Macaulay B-module.

This follows from the following more general proposition:

Proposition 12. Let A and B be two noetherian local rings, and Jet
¢ A — B be a homomorphism which makes B into a finitely generated
A -module. If E is a finitely generated B -module, then:

depth,(E) = depth,(E) and dima(£) = dime(E).
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The homomorphism ¢ : A — B maps m(A) into m(B): if not,
we would have m(A)B = B, contrary to Nakayama’s lemma. Write Fa
(resp. Eg ) for E viewed as an A-module (resp. a B-module). Let
(a1, , @) be a maximal Ej4 -sequence. If we let b, = ¢(e:) , the b;
form an E'g -sequence. Furthermore, this F'g -sequence is maximal; in-
deed, since (a;) is maximal, there exists a nonzero A-submodule F' of
F = E/(a1, a,}E which is annihilated by m(A) , and F' generates
a B -submodule of F which is of finite length over B , which shows that
(b1, , b)) is a maximal Eg -sequence. Thus

depth,(E4) = n = depthg(Eg).

The formula for the dimension is easy (e.g. use prop. 3 of Chap. III).

2. Several characterizations of Cohen-Macaulay
modules

Proposition 13. Let E be 4 Cohen-Macaulay A -module of dimension
n For every p e Ass(E) , we have dim A/p = n, and p is a minimal
element of Supp(E)

Indeed, we have dim(E) > dim(A/p) > depth(E) (cf. prop. 7),
whence dim(A4/p) = dim(E) = n, since the extreme terms are equal.
Furthermore, p contains a minimal element p’ of Supp(E} ; by th. 1 of
Chap. I, we have p’ € Ass(E) ; the above shows that

dim{A/p’}) = n = dim(A/p),

whence p’ = p , ged.

Proposition 14. Let E be a Cohen-Macaulay A -module of dimension
n >1,and let z € m such that dim(E/z&) =n -~ 1 Then the endomor-

ph& of E defined by z is injective, and E/zE is a Cohen-Macaulay
module.

Let p1,., px be the elements of Ass(E) If x belongs to one of the
pi, say py, we will have p; € Supp(E/2E) | whence dim(E/zE) > n
Thus 2z does not belong to any p;, which means (cf. Chap. I, prop. 7)
that the endomorphism of E defined by 1z is injective. It follows that
depth(F/xE) = depth(E) - 1 (cor. to prop. 6), whence the fact that
E/xE is Cohen-Macaulay.
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Theorem 2. If E is a Cohen-Macaulay module, every system of pa-
rameters of E is an E-sequence. Conversely, ifs system of parameters of
E is an E-sequence, E is a Cohen-Macaulay module.

Suppose that E is a Cohen-Macaulay module of dimension 1 ; let
(x1,., zn) be a system of parameters of E We will show by induction
on k that (x1,. ,zx) is an E-sequence and that E/{z1,., xx)E is
a Cohen-Macaulay module. For k = 0, this is clear. We pass from K to
k -+ 1 using prop. 14, and observing that dim{(E/{(z1,., zx)E) = n = k
since the z; form a system of parameters of E

The converse is trivial.

Corollary If E is a Cohen-Macaulay module, and if a is an ideal
of A generated by a subset of k elements of a system of parameters of
A, the module E/aFE is a Cohen-Macaulay module of dimension equal to
dim(E) - k.

This has been proved along the way.

The condition of theorem 2 can be transformed using the results of
part A. Let E be an A -module of dimension 7, and let x = (1. ., =)
be a system of parameters of E ; let us also write X for the ideal generated
by the ;. Let ex(E,n) denote the multiplicity of x with respect to E
(cf. th. 1), let Hy(x, E) denote the g-th homology group of the Koszul

complex defined by x and E, and let gr,{E) denote the graded module
associated to E filtered by the x-adic filtration.

Theorem 3. Let E be of dimension n If E is a Cohen-Macaulay
module, then for every system of parameters x = (Z1,., Zn} of E , we
have the following properties:

i) ex(E, n) = {E/xE), length of E/xE.

i1) gelE) = (EfxB)[X1,. , X

iiij) Hi(x, E) = 0

iv) Hyx,E} = 0 forall ¢>1.
Conversely, if a system of parameters of E satisfies any one of these prop-
erties, it satisfies all of them and E is & Cohen-Macaulay module.

Each of the properties i), ii), iii), iv) is equivalent to the fact that x
is an E-sequence: for iii) and iv), this is proposition 3; moreover i) and
ii) are equivalent (Chap. 11, th. 2); iv) implies i) according to theorem 1;
finally ii) implies that the Hi{(§, gr(E)) are zero for i > 1, which implies
(cf. part A, th. 1) that H;(x,E) = 0 for i 2 1. The theorem follows
from that.
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3. The support of a Cohen-Macaulay module

Theorem 4. Let E be a Cohen-Macaulay module of dimension 7, and
let z,,.,2, € m be such that dimE/(z1,. ,2)E = n — ¢, Then
every element p of Ass(E/(z1, ,2,)E) issuch that dim{A/p) = n—rp

The hypothesis means that x;,., &, is a subset of a system of pa-
rameters of E According to the corollary to theorem 1, the quotient mod-
ule Bf(z1, z,)E is a Cohen-Macaulay module of dimension n—r, and
the theorem follows by applying prop. 13.

Theorem 4 characterizes the Cohen-Macaulay modules. More pre-
cisely:

Theorem 5. Let E be of dimension n Suppose that, for every family
(zy,. »@r) Of elements of m such that dim E/(z;,., z:)E = n =1,
and for every p € Ass(E/(z1,. ,z-)E), we have dim{A/p) = n — 7.
Then E is a Cohen-Macsulay module.

We argue by induction on n,the case n = 0 being trivial. Thus
suppose i, > 1 Applying the hypotheses to an empty family of elements
T; , we see that dim(A/p) = n for every p € Ass(E) ;as dim(E) > 1, there
is therefore some z; € m(A) which belongs to none of the p € Ass(E).
The endomorphism of E defined by z; is then injective, and we have:

depth(E) = depth(E/z,E) + 1, dim(E) = dim{(E/z,E) + 1.

Moreover, it is clear that the module E/z;F satisfies the hypotheses of
th. 5 with n — 1 instead of 5 ; according to the induction hypothesis, it is
thus a Cohen-Macaulay module, and so is E

Theorem 6. Let E be a Cohen-Macaulay module of dimension 7 ,
and let p € Supp(E} Then there exists an integer r, and a subset of r
elements z,.,z, of a system of parameters of E , such that p belongs

to Ass(E/(x1, ,z,)E) Further,
dim{(A/p) = n-r dim(E) = 7
and E, is a Cohen-Macaulay A, -module.

Let 11,.,Z, be a subset of a system of parameters of E contained
in p and maximal with respect to this property. Let p; be the elements
of Ass(E/(z;,, z,)E) ; according to th. 4, we have

dim{A/p;} = n-r  for every i
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It follows in particular that the p; are the minimal elements of
Supp(E/{(z1,. . r)E) Since p ¢ Supp(E} , and zy,. ,2, are con-
tained in p , we have p € Supp(E/(z1,, 2-)F) , and p contains one
of the p;, say pi. | claim that p = p;. If not, we would have
dim(A/p) < dim(A/p;) = dim(A/p:) , whence p # p, for every i, and
we could find an element x,41 in p which belongs to none of the pi; the
set 11,.,%-+1 Would thus be a subset of a system of parameters of E
contrary to the maximality of x1,., Z,

Thus p = p; , which shows that the r; satisfy the stated condition,
and proves at the same time that dim({.A/p) = n—r Moreover, the ; form
an A,, -sequence of E, , which is at the same time a system of parameters,
since p is a minimal element of Supp(E/(z1,, z.)E) This proves that
E, is a Cohen-Macaulay module of dimension 7, ged.

Corollary 1, Every localization of a Cohen-Macaulay ring is a Cohen-
Macaulay ring.

Corollary 2. Let E be a Cohen-Macaulay module, and let p,p’ be
two elements of SUPP(E) | with p C p’ Then all the saturated chains of
prime ideals joining p to p’ have the same length, which is

dim(A/p) = dim(A/p").

It suffices to consider the case where p and p’ are consecutive,
i.e. where dim Ap//pAy = 1; then we have to show that

dim{A/p) = dim(A/p') =1
But, applying th. 5 to the module E,. , we find:
dimE, = dimEy - dim Ay /pApy = dimEp = 1.
Applying it to E , we find:
dimE, = dimE —dimA/p,
dim B,y = dim E = dim Alp.
Eliminating dim £, and dim Ep from these three equations, we obtain
dim A/lp = dim A/lp’ = 1, qed.

Corollary 3. Let A be a quotient of a Cohen-Macaulay ring, and let
P ¢ p’ be two prime ideals of A. Then all the saturated chains of prime
ideals joining p to p' have the same length, which is dim A/p - dim A/y’

We reduce to the case of a Cohen-Macaulay ring, which follows from
corollary 2.
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Corollary 4. Let A be a domain, which is a quotient of a Cohen-
Macaulay ring, and Jet p be a prime ideal of A We have

dm A =dm A,, + dm A/p.

This follows from corollary 3

Remark. Corollaries 3 and 4 are interesting because of the fact that the
local rings of algebraic (and analytic) geometry are quotients of Cohen-
Macaulay rings — and in fact are quotients of regular rings, cf. part D.

4. Prime ideals and completion

Let A be the completion of A. If p is a prime ideal of A, the ideal
pA is not in general prime in At may even happen that its primary
decomposition involves embedded prime ideals. We propose to show that
this unpleasant phenomenon does not occur when A is a Cohen-Macaulay
ring.

We first prove a general result:

Proposition 15  Let A and B be two noetherian rings, B being an
A-algebra. Suppose that B is A-flat. Let E be a finitely generated
A -module. Then:
Ass&E ©4 B) = U Assp(B/pB). (*)
pEAssA(E)

Let p € Ass(E). We have an exact sequence 0 — A/p — E , whence,
since B is A-flat, an exact sequence | — B/pB — E &4 B, and hence
Assp(B/pB) C Assp(E ®4B) .

Thus we have proved that the right side of the formula (*) is contained in
the left side.
For proving the reverse inclusion, let p;,. , p; be the elements of
Ass(E) , and let
E— @PE:
be an embedding, where the A-modules F, (i = 1., k ) are such that
Ass(E;) = {ps}, cf. Chap. I, prop. 10. We have

Assp(E ®4 B) U Assp(E; ®4 B),

and we are reduced to showing that AssB(Ei ®a B)c Assg(B/p,B) ie
we are reduced to the case where Ass(E) has only one element p
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Let us consider this case. By th. 1 of Chap. I, there is a composition
series of E which consists of modules of the type A/g,, where q, is a
prime ideal containing p Passing to E @4 B , we conclude that:

Assg(E ®4 B) C Assp(B/pB) U U Assp(B/4sB),

where the q, strictly contain p Let § = A — p ; the endomorphisms
defined by the elements of § are injective on E and therefore also on
E ©4 B since B is A-flat; thus p' 1S = § for every p' € Ass(E @4 B)
Moreover; since g, strictly contains p , we have (4/q,)s = 0, hence
(B/qaB)s =0,and p’ N S # & for every p° € Assp(B/qoB). Thus
Ass&E @, B) N Assg(B/q,B) = @, which concludes the proof.

Theorem 7.  Suppose that A is a Cohen-Macaulay local ring, and let p
be a prime ided of A. Then every element p' € AssA(A/pA) is such that
dim A/p =dm A/p (the ideal pA thus has no embedded component).

Let y = dm A — dimA/p According to theorem 6, there exists a
subset of r elements z1,., Z, of a system of parameters of A such that
p € Ass(E), where E = A/(z1,. , 7,)A Moreover, according to theo-
rem 4, the module E is a Cohen-Macaulay module of dimension dim A/p.
The game is thus true for its completion E According to proposition 15,
(which is applicable since A is A-flat), we have Ass(A/pA C Ass(E).
But, according to proposition 13 applied to E , every p’ € Ass(E) is such

that dim _»i/p' =dim £, whence the result.

Corollary Let E be a finitely generated module over a Cohen-
Macaulay local ring, and let n be an integer > 0. If every p € As§(E) is
such that dim A/p = n , then the same is true for every p’ € AsS(E)

This follows from th. 7, combined with prop. 15

Remark. It would be even more pleasant if we had pA = }p’, in the
notation of theorem 7. However, this is false in general, even if A is regular
([Nag3], p. 209, example 7). It is nevertheless true for the local rings of
algebraic geometry [Ch2], and more generaly for the “excellent” rings of
Grothendieck ([EGA], Chap. IV, §7.8); see also [Bour], Chap. IX, §4, th. 3.



70 V. Homological Dimension and Depth

C: Homological Dimension and Noetherian
Modules

1. The homological dimension of a module

We first recall some definitions from [CaE]. If A is a commutative ring
(noetherian or not) and if M is an A-module (finitely generated or not),
one defines:

- the homological or projective dimension of M as the supre-
mum (finite or infinite) projdim, M of the integers p such that
Ext% (M, N) £ 0 for a least one A-module N,

~ the injective dimension of M as the supremum inj dim, M of the
integers p such that Ext% (N, M) # O for at least one A-module N ,

the global homological dimension of A as the supremum
globdim A of the integers p such that Ext% (M,N) # 0 for at least
one pair of A -modules.

Saying that projdim (M} = 0 (resp. injdim4 M = 0) is the same as
saying that M is projective (resp. injective).

The following inequalities are direct consequences of the properties of
the bifunctor (M, N) - Ext} (M, N) :
If the sequence 0 — M' = M — M” — 0 is exact, then:
i) proj dim, M < sup(proj dim, M’, proj dim, M”) , and if the in-
equality is strict, we have proj dim, A" = proj dim, M’ + 1 ;
i) inj dim, M < sup(inj dim, M’, inj dim, M”) , and if the inequal-
ity is dtrict, we have inj dim, M’ = inj dim, M” + 1 ;
i) proj dim, M" < sup{projdim, M, proj dim, M’ + 1) , and if the
inequality is strict, we have proj dim, M = proj dim, M’

Similarly, if 0 = My C My c C M, = M is a composition series
of M,

projdimy, M < sup proj dim(M;/M; ;).
1<i<n

Proposition 16.  For any A -module M , inj dim, M is the supremum
of the integers p such that Extf,(N, M) # 0 for at least one finitely
generated A -module N

Indeed, let dM be this supremum. We obviously have the inequality
inj dm, M > dM and equality holds if dM = +oo Hence suppose that
dM is finite.

If dM = 0, Extl(A/a, M) = 0 for every ideal a of A and every
homomorphism of a into M extends to A ;whence M is injective {[CaE],
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Chap. 1) and inj dm, M = dM = 0
Suppose now that the result has been proved for dM < n and let us
show it for dM = n (n > 0). There exists an exact sequence

0—-M-—-0Q—->N-=-0
where Q is an injective module and inj dim, M =inj dim, N+1 We have
dM = dN + 1, and inj dim, N = dN (induction hypothesis). Whence
dM =in dim, M

Corollary (Auslander). globdim A = supproj dim, M , where M
ranges over all finitely generated A -modules.

Indeed, if we let d(M, N) denote the supremum of the integers p such
that Extf (M, N) # 0, we have the equalities:

globdim A4 = sup d(M, N) = sup(sup d(M, N))
M.N N M

= sup inj dim, N
N

= sup (sup d(M’, N)) = sup (sup d(M’, N))
N M M N

= sup proj dim, M’,
M
where M and N range over all A-modules, and M’ ranges over all
finitely generated A-modules.

2. The noetherian case

From now on, we suppose again that A is a noetherian ring and M is a
finitely generated A -module.

Then proj dim, M is the supremum of the integers p such that
Ext% (M, N) # O for at least one finitely generated A-module N ([CaE],
Chap. VI, proposition 2.5). Now every such N has a composition series

0= Ny CC N, =N
such that N;/N;_1 & A/p; , where p; is a prime ideal of A. It follows,
in the notation of the preceding section, that d{}M, N) < sup, d(M, A/p;)

and that proj dim, M < sup, d(M, A/p) where p ranges over the prime
ideals of A. Proposition 2.1 of Chap. VI of [CaE} can thus be restated as:

Proposition 17. Let n be aninteger > 0. The following assertions
are equivalent:

a} projdimy M < n.

b} Ext%H (M, Alp) = 0 for all prime ideas p of A
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c) For every exact sequence 0 — M,, - — Mp; — M — 0 such that
My, , M,_, are projective, M, is projective.

d} There exists an exact sequence 0 — M, — — My —- M — 0,
where the M; are projective, 0 <i < n

Of course, the A-modules Ext% (M, N) and Tor, (M, N) are finitely
generated if M and N are; indeed, if M is finitely generated, there exists
an exact sequence:

M,—...-M = My—M—=0,
where the M; (¢ > 0) are finitely generated free modules; the mod-

ules Extf (M, N) and Tor;f‘(M, N) are thus quotients of submodules of
Homa(Mp, N) and M, @4 N, and these are obviously finitely generated.

Proposition 18. Let M and N be A modules with M finitely gen-
erated. Jf ¢ : A -+ B is a homomorphism from A into B , and if B is
A -flat, then we have natural isomorphisms:

Torﬁ(M, N) @4 B = Torf(M ®4B, N ®4 B);

Ext, (M, N) ®4 B & Ext%(M 41 B,N @4 B).

We give the proof for “Ext * (note that the isomorphism for “Tor ”
holds without the finiteness hypothesis).

If, with the above notation, M is the complex defined by (M), = M,
and d, = ¢, M,, ®4 B is B-free and the complex M ®4 B gives a
projective resolution of M ®4 B Thus:

EXt%(M ®4B, N ®4B) = H?(Homgp(M ®4 B, N ®4 B))
&~ HP(Homs(M,N) &4 B)
(because M, is a finitely generated free module).
But B being A -flat, we obviously have:
HP(Hom4(M,N) ®4 B) = HP(Homa(M, N)) ®4 B
= EXtZ(M, N) ®A B,
qed.

This proposition applies when B = A[X] , where X is an indetermi-
nate, when B = A is the completion of A for an m-adic topology, or
when B = Ag where 5 is a multiplicatively closed subset of A

Corollary 1. If (A, m) is a Zariski ring and M isa finitely generated
A -module given with the m -adic filtration, we have:

proj dim, M = proj dimj M.
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Indeed, if Ext™(M,N) # 0, Ext”(M, N) is Hausdorff and its com-
pletion Ext*(M, N} is nonzero; whence proj dimz; M > proj dim, M
The reverse inequality follows from the more general property:

Proposition 19. Under the hypotheses of the above proposition,
proj dimg(B ®a M) < projdim, M.

Indeed, if 0 - M,, - — My;— M — 0 is a projective resolution
of M , the sequence

0—-M,@aB— ... oMy B—-M2,B -0

is a projective resolution of M &4 B

Corollary 2. One has
proj dim, M = sup proj dimAp M, = sup proj dimy_ Mn,
? m

where p ranges over the prime ideals of A and m over the maximal ideals.

Indeed, according to the above proposition, we have
proj dimAp M, < proj dim, M.

Moreover, if Exty(M, N) = P #£ 0, P, is different from O for at least
one maximal ideal m ; whence the assertion.

Corollary 2 reduces the study of the homological dimension to the case
of modules over a local ring.

3. The local case

Proposition 20. If A is 4 noetherian local ring, m its maximal ideal,
k = A/m its residue field and if M is a finitely generated A -module, the
following properties are equivalent:

a) M is free.

b) M is projective.

b) M is flat,

d) Tori(M,k) = 0,

The implications @) = b) = c) == d) are clear and it remains to show
that d) = a).

Thus suppose that Tor;{M, k) = 0 and let z1,., z, be elements of
M whose images in M/mM form a k-basis. Let P be a free A-module
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with basis ey, , e, and ¢ the homomorphism from P into M which
maps e; t0 z;. By Nakayama's lemma, ¢ is surjective. Let N be its
kernel. The exact sequence

0—=N-o-P M0
gives rise to the exact sequence:

Tor {P,K) = 0 — Tor; (M, k) = 0 = N/mN — P/mP 2, M/mM — 0.
As 3 is injective, N/mN and hence N are therefore zero, ged.

Corollary If A is a noetherian ring and M is a finitely generated
A -module, M is projective if and only if for every maximal ideal m of
A, My is a free A,,, -module.

This follows from the equality: proj dim, M = sup, proj dim, Mgy

Theorem 8. Let n be an integer > 0. Under the hypotheses of the
preceding proposition the following properties are equivalent:
a) pr}ldlmA
b) Tor,, (M N) =
) Tord,, (M, K

all p>n and for all A -modules N

I Ol

o
0.

It is clear that @) = b) = c) Let us show that ¢) = &). To do so,
choose an exact sequence

0— My 5 Moy 222h My 2% M S0
where the modules My, M;,., M, ., are free. Define
Zi = Kerdy, 0<i<n—-1.
Then the sequence 0 — Z; — M; — Z;_, — O is exact and
Tor;(Z;, k) = Torj1(Z;_1,k) if 7> 1
It follows that:
Tory(M,, k) = Tory(Zp_a, k) =
= Torn(Zo, k) = Torp4 (M, K) =

hence M, is free and @) is true.

Corollary 1. If M isa finitely generated module gver a noetherian
ring A, the following properties gre equivalent:

a) pr}ldlmA M < n.

b} Torf (M, N) = 0 for all p > n and for all A -modules N

c) Torn+l(M A/m) = 0 for every maximal ideal m
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Thii follows from the theorem and the two preceding propositions.

Corollary 2. If Ais a noetherian ring, the following properties are
equivalent:

a) globdimA < n.

b) TorﬁH(A/m, A/m) = 0 for every maximal ided m.

It is trivia that & = b) Conversely, if Tors, (A/m, A/m) =
then TorZ,,(A/m, A/n) is zero for every maximal ideal n (the annihi-
lator of Tor} (M, N) contains the annihilators of M and of N). Thus
proj dim4{A/m} < n and there exists a projective resolution

0—-L,—. - Ly— A/m —= 0.

But this implies that TorﬁH(M,A/m) =0 for every M; whence a).

D: Regular Rings

Definition A regular ring is a noetherian ring of finite global homo-
logical dimension.

1. Properties and characterizations of regular local
rings

Let A be aregular local ring, n = glob dim A , m the maximal idedl of A ,
k = A/m and M a nonzero finitely generated A-module. The following
proposition compares proj dim, M and depth, M :

Proposition 21.  proj dim, M + depth, M = n

The proposition is true if depth, M = O, for then there exists an
injection of k into M , and, as Tor, is left exact, an injection of Tor,(k, k)
into Tory,{M, k) :

0 — Torn(k, k) — Tors (M, K).

But Tor,(k, k) is nonzero (see corollary 2 to theorem 8) and so is
Tor,(M, k) , whence proj dim, M =1

Now suppose that the proposition is proved for every module whose
depth is strictly less than depth, M , and let us prove it for M
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It suffices to consider the case where depth 4, M > 0, i.e. where there
exists a € m which isg not a zero-divisor in M We have an exact sequence:

0—-M5 M M —0,
where M; = M/eM, and depth, M; = depth, M — 1.  Since
depth, Af, + proj dim, M; = n by induction hypothesis, it remains to
prove that proj dim, M; = proj dim, M 41
But, in the homology sequence:

Torp(M,k) 2 Tor,(M,k)  — Tor,{M;, k) —

Tory—1 (M, k) = Tor,_1(M, K),
a belongs to the annihilator of k: hence we have the exact sequence:

0 — Tory(M, k) = Tor, (M, k) = Tor, (M, k) — 0.
Since Tor,_;(M, k) = 0 implies Tor, (M, k) = 0, we have the equivalence:
Tory(Mi, k) = 0 <= Tor,—; (M, k) =0,

qed.

Corollary For proj dimy M to be equal to n , it is necessary and
sufficient that m is associated to M

The following theorem (cf. [Se2])shows that our homological defini-
tion of regular rings coincide with the usual one.

Theorem 9. Let A be a noetherian local ring of dimension r , with
maximal ideal m and residue field k = A/m The following properties are
equivalent:

a) A is regular.

b) m can be generated by r elements.

¢) The dimension over k of the vector space m/m?is ¢

d) The graded ring gr,,(A) , associated to the m -adic filtration of A, is

isomorphic to the polynomial algebra kX, ,X,]

The canonical map from m onto m/m? gives a surjective correspon-
dence between the minimal systems of generators of m and the k-bases of
m/m? Hence b) < c) Moreover, it is clear that d) = c) Conversely,
b) = d) because if m is generated by r elements we have the inequalities:

1 < A"Pu(An) = em(d,r) < HA/m) =1,

whence en(A, r) = £(A/m) and proposition 9 of Chap. Il applies.

Let us show that d) = a) Let x = (z,., x,) be a minimal
system of generators of m Property d) implies that x is an A -sequence
(this follows from th. 3 applied to the A-module A). In other words, the
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complex K{x, A) gives a free resolution of k :
0 - Ko(x, A) % 2 Ko(x, A) 5k — 0.

where Ky(x,A) = A and ¢ is the canonical map from A onto k Thus
for every A -module M, we have the equality Tor;(M, k) & H;(x, M)

In particular, Tor,(k, k) = Hij(x,k) = Ki(x,k) = K,(x) ®4 k,
whence Tor?(k, k) = A*(k"), Tors, (k, k) = 0, Tor2(k, k) = k. Thus
glob dim A = r < +o¢, ged.

It remains to show that a) = c) : Let n = glob dim A. From

projdimy A = 0 and projdim4A +depthy A = n
we find depth,.,, A=n, and
n=depthy A < dimA =r

Now the canonical map from K,(x, k) into Tor;(k,k) is an injection,
where x = (z3,.,2s}, § >, denotes a minimal system of generators of
m , i.e. induces a basis of m/m? (this is valid for every local ring A ; for a

proof see Appendix I); hence Tor,(k, k) # 0 and we have n > s Whence
the  inequalities:

r <s<n = depth, A< dim A =7,

and the result.

Corollary 1. If Ais regular, then dim A = globdim A

Indeed, the equality r = n has been proved along the way.

Corollary 2. Assume A is regular, and Jet x = (z;,. ,Z,) be a
system of parameters generating m Let M be a finitely generated A
module.

i) For i >{, one has natural isomorphisms

Torf(k, M) & Hi(x, M) 2 Ext’,*(k, M).
ii) Assume dim M = r Then M is Cohen-Macaulay if and only if it is
free.

We have seen that the Koszul complex K(x) gives a free resolution

of k This implies i), (cf. also cor. 2 and cor. 3 to prop. 3) and ii) follows
by applying prop. 21, together with the fact that r =%

Corollary 3. A regular local ring is normal, and Cohen-Macaulay

If Ais regular, it is Cohen-Macaulay by cor. 2, applied to M = A
it is normal, because gr, (A) is normal, cf. Chap. I, part A, §4.
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Corollary 4 {Auslander-Buchsbaum, {AuB3}). A regular local ring
is factorial.

This is a general property of normal domains in which every idea has
a finite free resolution (cf. [Bour], Chap. VII, §4, p. 68).

Corollary 5. A noetherian local ring of dimension O (resp. 1) is regular
if and only if it is a feld (resp. a discrete valuation ring).

This is clear.

Corollary 6. Assume A is regular of dimension 2. Let M be a finitely
generated A -module. The following properties are equivalent:
(i) M is free.
(if) There exists g finitely generated module N such that M is isomorphic
to Hom(N, A)
(iii) M is reflexive, i.e. the canonical map M — Hom{Hom(}M, A); A)
is an isomorphism.

The implications (i) = (i) = (i{)are clear. Let ys show (ii) = (i)
Choose N as in (i), and write it as L/R where L is free and finitely
generated. We have an exact sequence

0—-M-—=L - X -0,
where L' = Hom(L, A) and X is the image of L' in R’ = Hom(R, A)
Since L' is free, we have depth, L' = 2. On the other hand, neither As
nor X contain a submodule isomorphic to k Hence we have

depth, M > 1 and depth, X > 1.
Proposition 8 shows that depth, Af # 1. Hence depth, M > 2 and M
is a Cohen-Macaulay module, hence is free by corollary 2 ahove.
(This applies in particular when A is the Jwasawa algebra Z,[[T]] .)

2. Permanence properties of regular local rings

If A is a regular local ring, a regular system of parameters of A
is defined as any system x = {zj,., :cn} of parameters of A which
generates the maximal ideal m We aready know that every system of
parameters of A is an A-sequence. Among such systems, the regular
systems are characterized by:
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Proposition 22. If {xy,., z,} are p elements of the maximal ideal
m of a regular local ring A, the following three properties are equivalent:
a) I1,., Tpis a subset of a regular system of parameters of A
b} The images of z;,., z, in m/m? are linearly independent gyer &
¢} The local ring A/{z;, , xp) is regular, and has dimension dim A-p
(In particular, (xy,. ,zp) is a prime idedl.)

a) < b) : Indeed the regular systems of parameters of A correspond
to k-bases of m/m?
a), b) = c) : Indeed we have an exact sequence:

0 —p/pnm? —» m/m? - n/n? -0
where p = (x1,., p) and n = m/p and hence the equivalences:
b ) <«=p/pnmi:kl= pe=[n/n?ik] = dimA-p

But rj,.,Zp form a subset of a system of parameters of A, so
A/(z1, , zp) has dimension dim A p ; whence the result.

¢) = b) : Indeed, c) is equivalent to the two conditions:
[n/n?: k] =dimA/p and dim A/p = dim A = p.

Corollary  If pis anideal of aregular Iocal ring A | the following two
properties are equivalent:

a A/pisa regular loca ring.

b) p is generated by a subset of aregular system of parameters of A

Only the implication & = b) remains to be proved. But if n = m/p,
we have the exact sequence:

0 — p/p Nm% - m/m? - n/n =0,

and since [n/n? k] = dim A/p , we have [p/p N m?: k] = ht4 p

Thus if z,,., 1, are elements of p whose images in m/m* form a
k-basis of p/p N m? , then the ideal (z;,. ,T;) is prime and of height
p = htap;whence p= (z1,., %), qed.

Proposition 23. If pis a prime ided of a regular ring A , then the
local ring A, is regular.

Indeed, it follows from the properties proved in part C that
globdim A, < globdim A < o0
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Proposition 24.  If A is the completion of the local ring A for the
m -adic topology, we have the equivalences:

A regular < A regular.
Indeed, gr(A) = gr(A)

This last characterization of regular local rings is very useful, because
of the following theorem:

Theorem 10. If Ais a complete local ring, and if A and k = A/m
have the same characteristic, the following properties are equivalent:

a) A is regular of dimension n

b) A is isomorphic to the formal power series ring k[[X;, ,X,]|

The implication b) = & follows from theorem 9.

Conversely, @) =+ b) : We use the well-known fact that every complete
local ring A , with the same characteristic gs its residue field k , contains
a field k¥ mapping isomorphically onto k (Cohen, [Co]). For every reg-
ular system {z1.. ,xn} of parameters of A, there thus exists a unique
homomorphism ¢ from k'{X1,. ,X,] into A which maps X, to z;.
Since A is complete, ¢ extends to k'[[X;,. ,X,|| Since A is regular,
the map

ax(e) : ek (X0, , X)) = g (A)
is an isomorphism; hence the same is true for ¢, cf. Chap. Il, prop. 6.

Remark. For a proof of Cohen’'s theorem, see [CaCh], exposé 17:
and also {Bour], Chap. 1X, §3.

3. Delocalization

It follows from the above that the regular rings are the rings of finite
dimension such that for every maximal ideal m , A,,, is a regular local
Ting, and for these rings the dimension coincide with the global homological
dimension:
dimA = globdim 4, if A is regular.
Fields and Dedekind domains are the simplest examples of such rings.
Apart from these, we have the rings of polynomials according to:
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Proposition 25. If Ais a regular ring and A[X] the ring of polyno-
mials in X with coefficients in A, then A[X] is regular and
globdim A[X] = globdim A + 1.

We first verify the inequality: glob dim A[X] < globdim A 4+ 1 This
is a consequence of:

Lemma 1. If M is an A[X]-module, then
proj dim 415 (M) < projdm, M + 1.

Let us consider first the case where M = A[X] ®4 N , N being
an A-module (we write A4 = N[X] ): since A[X] is A-fla, we have
proj dimA{X} N[X] < proj dim, N , cf. prop. 19. Moreover, it is clew that
proj dim, N = proj dim, M

Now if M is an arbitrary A[X] -module, it is also an A-module, and
we will let M|X] denote the A[X] -module defined by the A-module M

We have an exact sequence (cf. Bourbaki, Algébre VII, §5.1):

0 =MX ZMX5M <o

Z Xim-,-;,

Z X+ @A m; = Z Xt @4 Xm;.

where

(Y X ®4mi)

and z X' @4 m)
3

Whence
proj dim 4 x; M < sup (proj dim 4 x) M[X], proj dim 415 M[X]+ 1)
= sup (proj dm, M, proj dim, M + 1)
= projdim, M +1,
qed.

Finally. let us show that glob dim A[X] > globdim A + 1 : Indeed, if
m is an ideal of A such that ht4 m = dim A = globdim A, we have

globdim A[X] = dimA[X] > htpx(m[X], X)
htapg m(X] 41

2
> htym+ 1.
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Corollary If kis a fidd, k{X;, ,Xxs] is regular.

Since every affine algebra is a quotient of a polynomial ring, we thus
recover the properties of chains of prime ideals in affine algebras.

Remark. Let A = k[Xy,.,X,|/a where a is an idea of the polyno-
mia ring k[X1, , Xu] Let X be the corresponding affine variety. One
says that X is non-singular if A is regular in the sense defined ahove.
When k is perfect, the following are equivalent (cf. eg. [Bour], Chap. X,
§7):

-~ X is non-singular;

— X is smooth over k ;

- k' @, A is regular for every extension k' of k

4. A criterion for normality

Theorem 11. Let A be a noetherian local ring. For A to be normal,

it is necessary and sufficient that it satisfies the following two conditions:

(i) For every prime ideal p of A, such that ht(p) < 1, the local ring
A, is regular (i.e. a field or a discrete valuation ring, according to
ht(jp) = 0 or 1).

(i) If ht(p) > 2, we have depth(A,) > 2

Suppose A is normal, and let p be a prime idea of A. If ht(p) < 1,
A, is regular (cf. Chap. Ill, prop. 9). If ht(p) > 2, let z be a nonzero
element of pA, ; then (loc. cit) every essentid prime ideal of A, in
A, is of height 1; thus none of them is equal to pA,, which shows that
depth(4,) > 2.

Conversely, suppose that A satisfies (i) and (ii), If we aready know
that A is a domain, prop. 9 of Chap. Il shows that A is normal. In
the general case, one first proves that A is reduced (i.e. without nonzero
nilpotent elements), and then that it is equal to its integral closure in its
total ring of fractions. For the details: see [EGA], Chap. IV, th. 5.8.6, or
[Bour], Chap. X, p. ‘21, Rem. 1.
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5. Regularity in ring extensions

In this section, A is a noetherian loca ring, with residue field k , and B is
a noetherian local ring containing A and such that m(A) < m(B) (Note
that this condition is satisfied when B is a finitely generated A module,
thanks to Nakayama's lemma)

Theorem 12. If B is regular, and A -flat, then A is regular.

By prop. 18, we have
B®, Torf(k, k) = Tor?(B g kB ® K) for all i

Since B is regular, these modules are O for § > dim B This implies that
the same is true for Tor#(k, k) , because of the following lemma:

Lemma 2. If M is a finitely generated A -module, then:
BoaM=0 = M=0.

Indeed, if A4 were #£ 0, it would have a quotient which is isomorphic
to k = A/m(A) and we would have B ®4 k = 0, contradicting the fact
that m(A) is contained in m(B),

Hence Torf' (k. k) = 0 for large i , which shows that A is regular.

Theorem 13. Assume B is finitely generated as an A -module.
(@) If A isregular, then: B is A -free « B is Cohen-Macaulay
(b) If B is regular, then: B is A-free & A is regular.

Assume A is regular. By prop. 12, B is a Cohen-Macaulay ring if
and only if depth, B = dim A, i.e if and only if B is a Cohen-Macaulay
A-module. By part ii) of cor. 2 to th. 9, this means that B is A-free
This proves (a) and half of (b). The other half of (b) follows from th. 12
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Appendix I: Minimal Resolutions

In what follows, we let A denote a noetherian local ring, with maximal
ideal m , and residue field k Every A -module is assumed to be finitely
generated. If M is such a module, we write A4 for the k-vector space
M/moM

1. Definition of minimal resolutions

Let L, M be two A-modules, L being free, and let w: L — M be a
homomorphism. Then 1t is called minimal if it satisfies the following two
conditions:
a) y is surjective.
b) Ker(u) C mL.

It amounts to the same (Nakayama’s lemma) to say that @ : L — M
is  bijective.

If M is given, one constructs a minimal u : I — M by taking a
basis (g;) of the k-vector space M = M/mM , and lifting it to (e;) , with
e; € M.

Now let i d y
LSS LS LS M0
be a free resolution L, of M Set:
Ni = Im(Lt- — Li-—l) = Ker(Lz-,l —* L,;_.g)‘

Then L, is called a minimal free resolution of M if L; — N; is
minimal for every i > 1, and e : Ly — M is minimal as well.

Proposition 1

(a) Every A -module M has & minimal free resolution.

(b) For a free resolution L. of M to be minimal, it is necessary and
sufficient that the maps d : L; — L;_1 are zero.

(@): Choose a minimal homomorphism ¢ : Ly — M. If Ny is its
kernel, choose a minimal homomorphism L; — Nj , etc

(b): Since L. is a resolution, the homomorphisms
d L, »N;and e: Lg— M

are surjective. For these to be minimal, it is necessary and sufficient that
their kernels N, (resp. N1 ) are contained in mL; (resp. in mLg ),

which means that the boundary operator d on L. is zero.
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Corollary If L. = (L;) is a minimal free resolution of M , the rank
of L; is equal to the dimension of the k-vector space Torf‘(M, k)

Indeed, we have:

Tor (M, k) & H,(L. & k) = H(L,) ~ T,

2

Remark. In particular, the rank of L; is independent of the chosen
resolution [, . In fact, it is easy to prove more: any two minimal free

resolutions of M are isomorphic (non-canonically in general). See e.g.
[Eil], or [Eis], §19.1.

2. Application

Let L. = (L;) be a minimal free resolution of M, and let K. = (K})
be a free complez, given with an augmentation Ky — M We make the
following hypotheses:

{Cy) Ko — M is injective.

(C; ) the boundary operator d, : K; — K;_; maps K; into mK,_;
and the corresponding map d; : K/mK; — mK,_;/m2K, | is
injective.

Since L. is a free resolution of M, the identity map M -+ M can
be extended to a homomorphism of complexes

[ Ke—= 1L,

Proposition 2. The map f is injective, and identifies K. with a direct
factor of L. (as A-modules).

We need to show that the f; ! K, - L, are left-invertible. But, we
have the following lemma (whose proof is easy):

Lemma Let L and L' be two free A -modules, and Jet g: L — [/
be a homomorphism. For g to be left-invertible (resp. right-invertible), it

is necessary and sufficient that g : L — T'is injective (resp. surjective).

We thus need to prove that the f,: K; — L; are injective. We
proceed by induction on 4 :
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a) i = 0. We use the commutative diagram
Ko — Lo

| |

M 4 A

The fact that Ko — M is injective implies that Ky — Ly is injective.

b) 1 > 1 We use the commutative diagram

K{ —_— ,La‘

l J

mK,-_l/m2Ki_1 — mLi_l/m2L.i_1.

Since f;_y: Ky-1 — L;_y is left-invertible, so is the map
fi—l . mKi_l/m?'Ki_l — mL,_l/mzL,-_l;

by the condition ( C; }, we conclude that the “diagonal” of the square above
is an injective map, whence the injectivity of K; — L,

Corollary  The canonical map H;(K, ® k) — Tor (M, k) is injective
for every ¢ > 0.

Indeed, H,(K, ® k) = H;(K.) = K; and Tor (M,k)=L; ; the
corollary just reformulates the injectivity of the f;

3. The case of the Koszul complex

From now on, we let M = k , the residue field of A.

Proposition 3. Let x = (x1,. ,x,) be a minimal system of generators
of m, and }Jet K. = K(x, A) be the corresponding Koszul complex. The
complex K. (given with the natural augmentation K, — & } satisfies the
conditions {Co ) and ( C; ) of §2.

We have K, = A and the map A — k is bijective. The condition
( Cy) is thus satisfied It remains to check ( C; ).

Set [ = A* ; let {e1, ,e,) be the canonical basis of L and
(e3, » e*) be the dual basis. We can identify K; with A L ; the bound-
ary map i i-1
d:NL—-o AT L
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is then expressed in the following manner:
j=s
dly) = D =5y L €5)-
j=1
The symbol « denotes the right interior product (cf. Bourbeki, Algebre I1I,
§11). We need to write d explicitly; for that, we identify K; with A" L
and mK;_1/m?K;_; with m/m? ® /\i_lf. Then the formula giving d

becomes:
=8

Z (Y &)
=1
with obvious notation. Since the Z; form a basis of m/m? | the equation
J(g) = 0 is equivalent to § v € = 0 for every j,whence j = 0, ged.

s

Theorem  We have dimg Tor (k, k) > O‘: , with § = dimy m/m?

Indeed, prop. 3, together with the corollary to prop. 2, shows that the
canonical map from Hy(K, ® k) = K; to Tor (k, k) is injective, and we

have dimgK; = 8

0

Complements. There are in fact much more precise results (cf. the
papers of Assmus [As], Scheja [Sc], Tate [T] quoted in the bibliography):

Tor (k, k) has a product (the product tof [CaE]) which makes it a
(skew) commutanve associative k-algebra with a unit, element; the squares
of elements of odd degree are zero. The isomorphism m/m? — Tors (k, K)
extends to a homomorphism of algebras ¢ : A m/m? — Tor (k, K WhICh
is injective [T]; we thus recover the theorem above. The ring A is regular
if and only if ¢ is bijective (it is even enough, according to Tate, that the
component of ¢ of some degree >> 2 is bijective). Moreover, Tor (k, K
has a co-product [As] which makes it a “Hopf algebra’. One can thus
apply the structure theorems of Hopf-Borel to it; this glves another proof
of the injectivity of ¢ . One also obtains information on the Pgincaré series
Pa(T) of Tord(k,k):

Pa(T) = 3 aT',  where g; = dimy, Torf(k, k)
i=0
For example ([T], [Ag]), A is a “complete intersection” if and only if
P4(T) is of the form (1 + T)y*/(1 — T%)4, with »,d & N ; for other analo-
gous results, see [Sc]. In all such cases, P4(1") turns out to be a rational
function of 7 In the original version of the Notes, it was asked whether

this is aways true: “On ignore si P4(T) est toujours une fonction ra-
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tionnelle’. This question, which some people misread as a conjecture, was
solved negatively in 1982 by D. J. Anick ([An1,2]), together with the anal-
ogous question for loop spaces of simply connected finite complexes.

Appendix Il: Positivity of Higher
Euler-Poincaré Characteristics

We choose the framework of gbelian categories. More precisely, let C be
an abelian category given with n morphisms %1, , %, from the identity
functor into itself. This means that every E € C is given with endomor-
phisms z,(E), , z.(E), and that, for every f € Hom¢(E, E), we have
z;(E') o f = f o z:(E) In particular, the z;(E) belong to the center of
End¢(E) , and they commute with each other.

If J <l =[1,n], the subcategory of C which consists of objects E
such that z;(E) = 0 for i € J is written as C; We have Cp = C ; besides
this case, we will have to consider J =1 and J = [2, n]

If Eisan object in C, the Koszul complex K(x, E) is defined in an
obvious way; its homology groups Hi(x, E) are objects of C , annihilated
by each z; ; in other words, they are elements of C;

We now consider the higher Euler-Poincaré characteristics formed
by means of the H;(x,E) First recall how one attaches (according
to Grothendieck) a group K(Z)) to every abelian category ‘D. One
first forms the free group L{P) generated by the elements of D; if
0 —E —E — E” 50 is an exact sequence in D, one associates
to it the element E — E' — E” of L(D) ; the group K(D) is the quotient
of L(D) by the subgroup generated by these elements (for every exact
sequence). If E € D, its image in K(2)) is written as [E] ; the elements
of K(D) so obtained are called positive; they generate K{(D} ; the sum of
two positive elements is a positive element.

This applies to the categories C; In particular, let E € C we have
Hi(x, E) €y, and the aternating sum:

X@(X,E) = [H.L(X,E)] - [Hi+1(er)] + ( i = 0! 11 )
makes sense in the group K{(C;} . We can thus ask whether this character-
istic x; is > 0 (in the sense defined above). We shall see that it is indeed
the case if C has the following property:

(N) Every E € C 4s noetherign, i.e. satisfies the ascending chain

condition fOr subobjects.
In other words.
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Theorem If C has property (N); we have x;(x,E) 2 0 for every
E €C andeveryi >0,

We prove this by induction on n

a) Thecasen =1

For simplicity. we write x instead of z; We have

Hy(z, E) = Cokerz(E) and Hy(z,E) = Kerz(E).
The positivity of y,(z, E) is clear for ¢ > 0. When { = 0, we have to
show that
vo(z, E) = [Cokerz(E)]  [Kerz(E)]

is a postive element of K(C;) For m = 1,2,. , let z™ be the m-th
power of z(E), and let N, be the kernel of z™ :the N,, increase with
m. According to (N), the N,, dsabilize; let N be their limit, and let
F = E/N . We have an exact sequence

0 ->N—-F - F—0.
The additivity of xo implies x¢(z, E} = xo(z, N) + xp(x, F) Since
Ker =(F) =0, xo{z, F}isequa to [Hp{z, F)] , hence is > 0. On the other
hand, z(N) is nilpotent; this shows that N has a composition series whose
successive quotients ¢}, are annihilated by = We have xo(z, Q) = 0
for every a, hence xo(z, N) = 3 xofz, Qa) = 0, and we get

xolz, E) = xolz, F) > 0.

b) Passing from n— 1 to n

According to prop. 1 of pat A, we have an exact sequence:

00— HD(.'El,H,,(X’,E)) — Hi(x, E) — Hl(.’Bl,H,;_]L(X’,E)) — O,
writing x' for the sequence (z2,. ,zn)

Passing to K(Cs), we can thus write:

[Hi(x, E)] = [Ho(zy, Hj)] + [Hi(z1, H )],
where H] = H;{x/, E) Hence:
X,‘(X,E) = [Hl(:El:Hf 1)]

+ Z ( 1 [Hﬂ .'131, H—m)} - {Hl(xl’H£+m)])
m>0

= [Hy(zy, H_)]+ > (D)™ xo(z1, Hip).
m=>0

Let J = [2 n] The H’ belong to C; By the induction hypothesis, the
element ¥ of K(C,) deflned by

= 3 (D™ Hlm)

m>0
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is >0, i.e. equa to (@] for some object G; of C; Since xp is additive,
we have

Xo(r1,Gi) = Z (=1)"xo(z1, Hi1)  in K(Cy).
m>0
Hence
xi(x, E) = [Hy{z1, H{_1)] + xolz1,G))
Since xo(z1,Gi) > 0 by a), we have y;(x, E) > 0, qged.

Example. Let A be a noetherian local ring, let z;, , £, be a system
of parameters of A, and let C be the category of finitely generated A-
modules (with the endomorphisms defined by the z; ). The category C;
is the category of A -modules annihilated by the z; ; the length defines
an isomorphism from K(C;) onto Z , compatible with the order relations.
The above theorem thus gives:

Corollary If E is a finitely generated A -module and i is >0, the
integer

xi(E) = &Hi(x, E)) ~ {Hiti(x, E)) +
is=>0.

Remark. In the case of the above example, one can prove that

xi(E) = 0 implies H;y(x,E) = 0 for j > 4 > 1
However, the only proof of this fact that | know of is somewhat involved
(it consists of reducing to the case where A is aring of formal power series

over a discrete valuation ring or over a field). | do not know if there exists
an analogous statement in the framework of abelian categories.

Exercises.
1) Assume that C has property (N). Recall that an object of C is
smple if it is # 0 and it has no nonzero proper subobject.
a) Show that every nonzero object of C has a simple quotient.
b) (Nakayama's lemma) Show the equivalence of the followng three
properties of C :
() E is smple = s(E) = 0 for i =
(ii) Coker{z;(E)) = 0 for some i = E
(i) Hy(x,E) = 0 = E =0

1. n

0

2) Let z1,., T, be elements of a commutative noetherian ring A,
and let B be an A-algebra. Let C be the category of left B-modules
E which are finitely generated as A-modules (the endomorphisms z;(E)
being those given by the ;). Show that C has property (N), and that it
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has properties (i},(it),(iii) of exerc. 1 if the z; belong to the radical of A.
(Note that this applies in particular when B is the group algebra A|G] of
agroup G .)

Appendix Ill: Graded-polynomial Algebras

All the results proved for local rings have analogues for graded algebras
over a field. These analogues can be proved directly, or can be deduced
from the local statements. We follow the second method.

1. Notation

We consider finitely generated commutative graded algebras over a field k :
A= PA.,  with 4=k,
n>0
together with graded A -modules M = P M,, such that M_, = 0 for all

sufficiently large n
We put m = m(A) = .51 A ; it is a maxima ideal of A, with

A/m = k. The completion A, of the local ring A, can be identified
with the algebra of formal infinite sums:

ay + ax + t a + , with a, @ A, for every n
One has the following analogue of Nakayama's lemma

Lemmal. I M=mM, then M =0

Indeed, if M # 0, choose n minimal such that M, # 0, and note
that M, is not contained in mM .

Lemma 2. Iff: M — M’ is a homomorphism of graded modules, and
if M/mM — M’/mM'is surjective, then f is surjective.

This follows from lemma 1, applied to M’/f{M)

A graded A -module M is caled graded-free if it has a basis made
up of homogeneous elements. If one denotes by A(d) a free A-module
with hasis @ homogeneous element of degree d , M is graded-free if and
only if it is isomorphic to a direct sum of A(da) ’s-
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Lemma 3. The following properties are equivalent:
{i) M is graded-free.

(i) M if A -flat (as a non-graded module).

(i) Tor{(M, k) = 0

It is clear that (i) = (ii) = (iii). To prove (iii) = (i) , choose a
k-basis (5,) of homogeneous elements of M/mM Put d, = deg(ia)
and select a representative x, of I, in M Let L be the direct sum of
the free modules A(d,} The o 's define a homomorphism f: L — M,
which is surjective by lemma 2. Put N = Ker(f) We have an exact

sequence:
Torf (M, K) — N/mN — L/mL — M/mM — 0.
By construction, L/mL — M/mM is an isomorphism, and by (iii) we have

Tor;' (M, k) = 0. Hence N/mN = 0, which implies N = 0 by lemma 1.
Hence M is isomorphic to the graded-free module N , ged.

2. Graded-polynomial algebras (cf. [LIE], Chap. V, §5, and
[Bour], Chap. VIII, §6)

We say that A is a graded-polynomial algebra (in French: “algebre
graduée de polynomes”) if there exist homogeneous elements Py, , Fy
of A, such that the natural map

k’[Xl,... :Xﬂ[] HA,

defined by the P;’s, is an isomorphism. If this is the case, the monomials
P P with E a; deg(P) = n

make up a basis of A, The Ppincaré series of A,
¢alt) = 3 dimg(A,)E"
n=0

is equal to

<1

, itha; =d ;

£Il 1—¢a wi eg(P;)
This shows that the sequence (a,} is independent of the choice of the
F;’s (if numbered so that a; < ay < < ag). The g; are called the
basic degrees of A. Note that A is isomorphic to the symmetric algebra
Sym(L} , where [ is the graded-free A-module L = P A{a;)
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3. A characterization of graded-polynomial algebras

Let A= ®n>0 A, be a graded algebra satisfying the conditions of §]

Theorem 1.  The following properties are equivalent:

(1) A'is a graded-polynomial algebra.

(2) Ais isomorphic (as a non-graded algebra) to a polynomial algebra.
(3) A'is a regular ring.

(4) The local ring A, is regular.

It is clear that (1) = (2) = (3) = (4). Let us show (4) = (1).
First note that m/m? is a graded k-vector Space of finite dimension. Let
{p1,- =Pd) be a basis of tn/m2 made up of homogeneous elements; let
a; = deg(p:) and choose a representative P, of p;, in A,, Let A’ be
the graded-polynomial algebra k[X3,, Xq , with deg(X;) = a; , and let
j © A" — A be the unique morphism such that f(X;)= F; for every i
One sees easily (by induction on n) that f(A])= A, for every n ,ie.
that j is surjective. The local map f : }i;n, —+ Ap (Where m' = m{A’))
is surjective, and, since A,, is regular, it is an isomorphism (use th. 10 of
part D §2, for instance ¢} ). This implies that j is injective. Hence j is
an isomorphism, ¢ed.

Remark. Another property equivalent to (1), ,(4} is:
(5) dim(A) = dimg(m/m?).

4. Ring extensions

Let B = @n:»an be a commutative graded k-algebra containing A,
and such that By = k

Theorem 2.  Assume that B is a graded-polynomial algebra.

(@) If B is a graded-free A -module, A is a graded-polynomial algebra.

(b) Conversely, if A is a graded-polynomial algebra, and if B is a finitely
generated A -module, then B is a graded-free A -module,

In case (a), the local ring By,p, is regular, and is a flat A, module.
By th. 12 of part D §5, this implies that A,, is regular; hence Ais a
graded-polynomial algebra, cf. th. 1.

{*} Alternative argument: if Ker( f) were # 0, we would have the inequal-
ity dimAn < dimA/, , but it is clear that both dimensions are equal to
dimg (m/m?)
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A similar argument shows that (b) follows from th. 13 of part D §5,
combined with lemma 3.

Remark. In case (b), the A-module i? has a basis (b,) made up
of homogeneous elements. Put e = deg(b,) Since B = €, Ab, , the
Poincaré series ¢g{t) of B is given by

(4.1) ¢a(t) = (O t*)palt)-

[ad

If one writes ¢4(t) and ¢g(t) as:
d

sa(t) = ] 1—_1—#'., ¢8(t) = [ 1_1tb.-’

i=1 i=1

with d = dim A = dim B, one has
d d
(42) Qo la-e = [Ja-¢.
o 1=1 i=1

Dividing both sides by (1 - #)¢, and putting ¢ = 1 gives:

(4.3) B:A]] &= ]] e

where [B : A] is the rank of the free A -module B , i.e. the number of
elements of the basis (b,)

Example. Take B = k[Xi, , Xg4] with the standard grading:
deg(X;) =1for 1 <i < d. Choose for A the subalgebra of the symmet-

ric polynomials. We have A = k[Pi, , P4}, where Py,., P; are the
elementary symmetric polynomials:
P =X+ -+ Xq yPa=X1-- Xa.

This shows that A is a graded-polynomia agebra with basic degrees
1,2,. ,d. By th. 2, B is a graded-free A-module. Indeed: one can
check that the monomials

X7 X, with0 < m; < i,

make up an A-basis of B The identity (4.2) above becomes:
d
@-tJJa+e+-+e =@ -1 -1 -t

i=1
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5. Application: the Shephard-Todd theorem

We are going to apply th. 2 to the proof of a theorem of Shephard-Todd
([ST]) which is very useful in Lie group theory.

Let V be a k-vector space of finite dimension d, and W a finite
subgroup of GL(V) such that
(@) the order |W|of W is prime to the characteristic of k
(b) W is generated by pseudo-reflections.

(A pseudo-reflection s of V is an automorphism of V such that
Ker(s = 1) is a hyperplane of V. Such an automorphism can be written
as ¢ — 7 + u(Z)v , where ¥ € V ~ {0} , and u is a non-zero linear form
on V.})

Let B = Sym V be the symmetric algebra of V , with the standard
grading; it is a graded-polynomia agebra, isomorphic to k{Xi, , Xg
The group W acts on B. Let A = B¥ be the subalgebra of B made
up of the elements fixed by W .

Theorem 3 ([ST], see also {Ch3]). The algebra A is a graded-
polynomial algebra.

It is easy to see that B is a finitely generated A -module (e.g. because
it is integral over A, and generated as an A-algebra by a finite number
of elements). By th. 13, it will be enough to prove that it is a graded-free
A -module. By lemma 3, this amounts to proving that the k-vector space
E = Tor{(B, K) is 0.

Note that E is a B-module, and that W acts on E

Lemma 4.
(i) We have EW = 0.
(i) The group W acts trivially on F' = E/m(B)E

Assume Lemma 4. Since |W| is prime to the characteristic of k , the
surjective map E — E' gives a surjection E¥ — E'Y By (i) we have
EW = 0. Hence E’Y = 0 and by (ii) we have E' = 0, hence E =0 by
Nakayama's lemma applied to the B-module £

Proof of part {i) of Lemma 4
Since the order of W is invertible in A, we have

Tor (M, KWW = Torf‘(MW;k)
for every A-module M with an A-linear action of W (e.g. use the
projector 7 Lyew W )-
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By taking M = B, and ¢ = 1, this gives
EY = TaMB, k)W = Torf(BY,k) = Torf(4,k) =0 .

Proof of part (i) of Lemma 4

Let s: 2 +— z+ u(z)v be a pseudo-reflection belonging to W The
action of s on B is trivial modulo the ideal vB. (Note that » is an
element of B, ) Hence we may factor ¢ = 1 on B as:

BABAB,
where ) is A-linear, and g is multiplication by ¥ This gives an analo-

gous factorization of the endomorphism (s - 1}g induced on E by § . 1,
namely
Ap bE
E—FESE,

where gy is multiplication by v In particular, the image of (s = 1)g is
contained in vE, hence in m(B)E This shows that the pseudo-reflections
belonging to W act trividly on E' = E/m(B)E Since W is generated
by pseudo-reflections, this proves (ii).

Remark.  There is a converse to th. 4: if BY is a graded-polynomial
algebra, then W is generated by pseudo-reflections (see [ST], and also
Bourbeki, [LIE], Chap. V, §5, no. 5).

Exercises (cf. [LIE], Chap. V).

Let B, A beasinth.3,and call q; (1 =1,...,d) the basic degrees
of A. Assume char(k) =

Lee C=B ®4 k = B/m(A)B It is a graded k-vector space, with
an action of W.Let y € W; if n > 0, denote by x,(w) the trace of
acting on the n-th component of C

1) Show that C'@, A isisomorphic to B as a graded A[W] -module.

Deduce that the linear representation of W on C is isomorphic to the
regular representation of W

2) Provethat |W| = [B : A] = dimy C = Hf=1 ;

1
no_ - v e W
3 ) Show that ¢A(tl>50 Xn(w)t™ = e = tw)for w ¢ W, where

$alt) = H 1 _ltai )

14
i=1
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1 ifn=20
4 Showthat = !
) IR P,

5) Use 3) and 4) to prove'

|"V| Z det(l - tw)’

6) Show that det(t—w) divides the polynomial P4{z) = H (t% = 1)

for every w € W , and that Pa(t) = I%III/IV det(t = w)
o

7) Let V' be a subspace of V and let W' be a finite subgroup of
GL(V") generated by pseudo-reflections. Assume that every element of
W'’ is the restriction of some element of W Let a’ be the basic degrees
of W'.

Show, by using 6), that the polynomial H (tf‘j 1) divides the
J
polynomial H (t* » 1) In particular, every a.; divides some q;



Chapter V. Multiplicities

A: Multiplicity of a Module

In thii section, A is a commutative noetherian ring; all A-modules are
assumed to be finitely generated.

1. The group of cycles of a ring

An element of the free abelian group Z(A) generated by the elements of
Spec(A) is called a cycle of A (or of Spec(4)). A cycle Z is positive
if it is of the form

Z = Z n(p)p  with n(p) > 0 for every p € Spec(A)

Let us assume now that A ig local, of dimension n, If p > 0, let
Z,,(A) be the subgroup of Z(A) generated by the prime ideals p with
dim A/p = p The group Z(A) is the direct sum of its subgroups Z,(A) ,
for 0 <p<n.

The cycles are related to A -modules in the following way: Let K,(A)
be the abelian category of A modules M such that dims M < p, K(A)
be the category of all A-modules. It is clear that if

0—-—M-—-N—=P-0

is an exact sequence of K(A) and if M and P belong to K,(A), then
N € K,(A4).

Under these conditions, let M € K5{A)  and let § be a prime ideal
of A with dim A/q = p Then the module Mg over A, is of finite length
£(M,) and this length obviously satisfies the following property:
if 0= Mg C C M CC M, =M is a composition series of M
whose quotients M;/M,;_; are of the form Aft, where tis a prime ideal
of A, then it has exactly £(M,) quotients of the form A/q
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Thus let zp : Kp{A) — Z,(A) be the function defined by
2p(M) = Z £(My)q.

dim A/q=p

It is clear that z, is an additive function defined on the category K,(A)
and has values in the ordered group Z,(A) The function z, is zero on
Kp—l(A) :

Conversely, it is clear that every additive function on K,(A) which is
zero on K,_,(A) factors through zp.

If A is adomain, then Z,(A) ¢ Z for n = dm A, and z,(M} is
the mnk of the A -module M

2. Multiplicity of a module

Assume A is local; let m be its maximal idea, and let ¢ be an m-primary
ideal. Then, for every nonzero A-module M , the Samuel polynomial
P,(M, X) defined in Chap. Il is of degree equal to dim4 M Furthermore,
its leading term is of the type eX”/r! where r = dimy M and where ¢
is an integer > 0.

The integer e is, by definition, the multiplicity of M for the pri-
mary ideal @. One writes it as e,(M) ; more generally, p being a positive
integer and M a module such that dima M £ P, we set

e,(M) if dima M = p,
ea(M.p) = { 0 if dima M < p.

It follows from the properties proved in Chap. Il that €a(3,p) is an
additive function on K,(A), which is zero on K,_;(A) ; we thus have the
additivity formula:

ea(M,p) = > UMg)ea(Afa,p)

where g runs through the prime ideals with dim A/q = p (or those with
dim A/g < p : it amounts to the same).
In particular, if A is a domain of dimension © , we have

eo(M,n) = rank(M)ea(4).

If a=m, eM) = ¢(M) is caled the multiplicity of M In particular
e,(A) is the multiplicity of the local ring A.

If A is regular, its multiplicity is equal to 1 , according to Chap. IV.
Conversely, if the multiplicity of A is equal to 1 and If A is ¢ domain,
one can show that A is regular (cf. [Nag3], th. 40.6, and also [Bour],
Chap. VIII, p. 108, exerc. 4); an example from Nagata shows that it is not
enough to assume that A itself is a domain.

Finaly, let x be an ideal of definition of A, which is generated by
Ii,. » T, Where n = dim A, According to theorem 1 of Chap. 1V, the
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i -th homology group of the Koszul complex K(x, M) is of finite length
hi(x, M) for every A-module M and every { > 0, and we have the

formula
n

ex(M,n) =Y (—1)hi(x, M)

i=0

B: Intersection Multiplicity of Two Modules

1. Reduction to the diagonal

Let k be an algebraically closed field, let [J and V be two algebraic sets
of theaffinespace A,(k) 2™, and let A be the diagonal of the product
space A,(k) x A,(k) = As.(k). Then A is obviously isomorphic to
A,(K) and the isomorphism identifies (U ¥ V) M A with [J n V This
reduces the study of the intersection of {J and V to the study of the
intersection of an algebraic set with a linear variety.

This viewpoint already occurred in prop. 17 of Chap. Il (Dimensions
of intersections in affine space). In particular, in lemma 7, it helps to
view A ®; A as the coordinate ring of A,(k) x A,(K) , and A/p g, Alq
and (A ®; A)/v as the coordinate rings of &/ x V and A (U and V
irreducible). The isomorphism of {7 x V}nA with UnV translates into:

Alp@aAlg 2 (A/p @k Al9) @ag,a) A (1)
where we identify A with (A &, A)/0
This formula generalizes as follows: let A be a commutative alge-
bra with a unit element over a commutative field k (not necessarily al-
gebraically closed); let M and N be two A-modules, B the k-algebra
A®p A, and D theideal of B generated by the a®1-1®a, a € A. Then
(A @ A)/v isa k -agebra isomorphic to A, and A is given a B-module
structure via this isomorphism. We have the formula {[CaE], Chap. IX,
2.8).

Torf (M & N,A) ™ Tors(M,N). @)
So, if
v—)Lni‘-},,.—iLg——’A—"O

isan (A ®; A) -projective resolution of A, the bifunctor
(Mg N)H(M®k N)@B L,
is “resolving”, i.e. Tor?{M, N) 1s naturally isomorphic to the homology
modules of the complex (M &; N) ®p L.. In particular, if A is the
polynomial algebra k{X; , , Xn] 1 n variables X; over k , the Koszul
complex KZ({X; ® 1 =1® Xi), B) 1s a free resolution of A, and we have:
Tory (M, N) & Ho(KP((X: ® 1 - 1 ® X3), M @, N)). (3)


Unknown
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We recover the fact that k[X1 , , X] is regular!

In what follows, the reduction to the diagonal will be used via formula
(2) suitably generalized to completed tensor products (see below).

2. Completed tensor products

Let A and B be k-algebras, with &, A, B noetherian, and let m, n
denote ideals of A and B respectively such- that A/m and B/n are
k-modules of finite length. Let M (resp. N ) be a finitely generated A
module (resp. B-module) given with an m-good filtration () (resp.
n-good filtration (Ng) ). Then, M/M, and N/N, are k -modules of finite
length for every pair (p, ¢) of natural numbers.

Then, for every natural number i , the modules Tor®(M/M,, N/N,)
form a projective system, and the completed Tor; are defined by the
formula:

—t
TOIi (M! N) = El_r_n TO[?(M/MI,, N/Nq) 4
{p.g}
For { = 0, we obtain the completed tensor product (cf. [Sa3]}:
M @ N = m (M/Mp ®, N/Ng). ©)]
(p.q)

The abelian groups thus defined have the following properties:

—k
1) The modules Tor,; (M, N) do not depend on the chosen good filtration
for M or N, but only on M and on N (and of course on the maximal
ideals of A and B containing m and 1 ).

2) Asthe diagonal of N x N is a cofinal subset, it suffices to take the
projective limit over this diagonal:

e .
Tor, (M, N) & lim Torf(M/M,, N/Ny). (6)
B
Similarly we may take the above limit over p and then over q :

Tor (M, N) 2 limlim Tork (M/M,, N/N,)
P oq

= i lim Tork (M /M, N/No)
9 P

3) The canonical maps from M ® N into M/M, ® N/N, induce the
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maps
M@ N — Lm(M/M,) @ im(N/N,) = M N
P q
and M@, N — M &N,
and it is clear that M &, N is naturally isomorphic to the completion of
M @ N for the (m @ B+ A & n) -adic topology.

4) Thering A &, B is complete for the t -adic topology, where
t = mB, B+ ABn
and the ’f‘o}f(M, N) are complete modules for the t-adic topology Since
(A & B)/r = (A/m) & (B/n)
and (M & N)}/e(M & N)= (M/mM) @ (N/nN),

corollary 3 to proposition 6 of Chap. 11 is applicable and s0 A & B is
noetherian and M g, N is a finitely generated (A ®; B) -module.
Moreover the formula ﬁ = 1+x+x%+. shows that r is contained

in the radical of A @k B and the maximal ideals of A @k B correspond
to those of (A/m) & (B/n).

5 If0—- M —M— M" — 0is an exact sequence of finitely generated
A-modules, the exact sequences

— Tork (M/mPM, N/nIN)
— Tor¥ (M" /mPM", N/a?N)
— Tor*_(M'/M'0 wPM, N/nIN) —
give an exact seguence
— Tora(M, N ) = Tor,(M",N) - Tot_;(M’,N) —
This follows from the following genera property: if
¢: (P))—= () andy: (B) — (P)

are two morphisms of projective systems of k-modules over an inductively
ordered set, if the P are artinian, and if the sequences

Pl % p 2 P
are exact, then the limit sequence
lim P} — lim P; — lim P}
— — —
is exact.
[ Proof. Let (p;) be an element of Ker(limF; — lLim P’} Let E; be
— —

the preimage of p, in P/. The set E; is non-empty, and has a natural
structure of affine k-module. Let &; be the set of all affine submodules
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of E; Using the fact that P/ is artinian, one checks readily that the
family {&;) has properties (i), ,(iv} of Bourbaki E.III.58, th. 1, and
this implies (loc. cit.) that lim E; # # Hence (p;) belongs to the image
of %i“ Plin lim P; . |

6) Suppose now that k is a regular ring of dimension n and suppose that
M, viewed as a k-module, has an M-sequence {ai,., a,;} , i.e that
there exist r elements q; in the radica of k such that a;+1 is not a
zero-divisor in M/(a1,., )M 0 <i<r =1

—k
Then Tor; {M, N) = 0 for ¢ > n = I Indeed, it suffices to show this
when N is a k-module of finite length, since
e— ——"—'-k
Tor, (M, N) = lim Tor, (M, N/q"N).

The exact sequence

OAM—%LM—rM/alM—)O,
together with the fact that Tor (M, N) = 0if i > n , gives the exact
sequence: oy .

0 — Tor, (M, N) <5 Tor, (M, N).
But a power of a; annihilates N , hence also ﬂ:(M1 N) It follows that
f&k(M,N) =0, which proves our assertion for r = 1. If r > 1, we have
TG?"(M,N) =0, whence the exact sequence

-k =k
0 - Tor,, (M,N) =% Tor,_,(M,N), e t c

In the examples we will l’.cjse, the algebra A has an A-sequence of 7
elements. It follows that Tor, (M', N) = 0 if M is A-freeand i > 0
In thii case the functor M — T—&i (M, N) is the i-th derived functor of

the functor M — M &, N This implies that 'fa"f(M, N) is a finitely
generated A ®; B-module.

The machine just constructed will only be used in the following two
secid  cass

a) k isafield A & B KX;,...,X,]]:

In this case the fb?f are zero for i > 0 Moreover, A ®x B is isomor-
phic to the ring of formal power series C & k[[X1,, Xn: Y1,, 1]

Let now q (resp. @ ) be an idea of definition of A (resp. B ),
and let 5 be the idea of C generated by q and ' Let us put on M
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N, M & N the q -adic, ¢’ -adic and s -adic topologies, and consider the
corresponding graded modules gr(M), gr(N), gi(M ®x N) The natural
map M @, N — M &, N induces a homomorphism
gr(M) ® gr(N) — gr(M & N).
One checks easily (cf. [Sa3]) that this homomorphism is bijective. Hence:
dim(M &, N) = dim(M) + dim(N)
and
es(M & N,dim M + dim N) = e,(M,dim M) - ey (N, dim N).
Findly if
— K, —...oKg—M—20
and
—=Lp— ... =Ly M->1D R
are A- and B-free resolutions of M and N, (3(K, ® Lg}psrg=n)n IS
a C-free resolution of M &; N In particular if we identify A with the
C-module C/p, where o = (X; = Y1,. ,&, ¥,) we have the equality
Ky, @4 Lg=(Kp @ L) ®¢ A,
whence the formula of reduction to the diagonal:
Tor (M, N) & TorS(M & N, A).

b) k is a complete discrete valuation ring, A 2 B  k[[X,,. ,Xn]]_
The letter n denotes a generator of the maximal ideal of k and %
denotes the residue field k/nk
Put:
C = A&B = &[[X1,... . Xn;11,... . Y5]],
A= A/mA = K[X1,...,X.],
C= kX1, XV, Yol
We have (M &, N)/a(M &, N) = (M/zM) & (N/xN). It follows
that, if 7 isnot a zero-divisor in M and NV, we have
dimM &, N = dimM+dimN-1

Finaly, resolving M and N as in &), and taking a C-projective
resolution of A = C/9, we end up with a spectral sequence:
e
Torg(A, Tor, (M, N)} = Tor§+q(M, N}
This spectral sequence degenerates if T is not a zero-divisor in M or
N ; it gives an isomorphism

TorS (A, M & N) = Torj (M,N).
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3. Regular rings of equal characteristic

Let us look at case a) of §2 above, i.e. A = k[[X1,,X,]], where k is
a field. Here, the Koszul complex K¢ ((X; - ¥;},C) is a free resolution
of A = C/o.If M and N are two finitely generaged A-modules, the
Tor;.“(M, N) may thus be identified with Torg(A, M & N) , i.e. with the
homology modules of the Koszul complex K“((X; —=¥;), M & N) :
Tor (M, N) & H{K°((X; ~ ¥;), M & N)).
Theorem 1 of Chap. IV applies to this Koszul complex, and gives the
following result:
(¥} 1M g, N has finite length, then the Tor (M, N) have finite
lengths, and the Fuler-Poincaré characteristic
=N
x(M, N) = 3~ (-1)" &(Tor (M, N))
i=0
is equal to the multiplicity e, (M & N, n) of the C-module M &;, N for
the ideal @ Thus
x(M,N) =2 0,
dima M +dims N = dimcM@)kN <n,
x(M,N) = 0 ifand onlyif dimg M +dimy N < mn.

Thii result is easily generalized to the regular rings from algebraic
geometry. First of all it is clear that every regular ring A is a direct product
of a finite number of regular domains (a noetherian ring A such that, for
every prime ideal p , A is a domain, is a direct product of a finite number
of domains). If A is a domain, then A is called of equal characteristic
if, for every prime ideal p , A/p and A have the same characteristic. We
shall say that a regular ring A is of equal characteristic if its “domain
components” are of equal characteristic, which is to gay if, for every prime
ideal p, the local ring A, is of equal characteristic.

Theorem 1. If A is a regular ring of equal characteristic, M and
N are two finitely generated A -modules and ¢ a minimal prime ideal of
Supp(M @4 N) , then:

(1) xq(M,N} = SZ3mAC 138 g Torf (M, N)g) is > O;

(2) dima, My + dims, Ny < htsq;

(3) dim M, 4+ dim Ny < hi4 g if and only if y, (M, N) = 0

If we localize at q , and complete, we have

Tor (M, N)q = Torf“(Mq,Nq) = Torf'“(Mq,NTq).
Hence we may assume that A is complete, and that q is its maximal
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ideal. By Cohen's theorem, A is then isomorphic to &[[X,,,X,]] , and
we apply (x) above.
Moreover:

Complement. If a and b denote the annihilators of M and & in A,
m the maximal ideal g4, of A,, ¢ the ideal generated by a + bin A, ,
and if x4(M, N) > 0, we have the inequalities:

em* (Mg, dim M,)-en (N, dim N,) < Xa(#, N)
< e (M, dim M) - el*(Ny,dim N,).

Indeed, if k denotes a Cohen subfield of ziq, we have seen that
xq{M, N) is equal to the multiplicity e’ (M & N, ht4 q) , where
C =A & A
and where 7 is the ideal of C generated by the a @k 1-1 @k a,ach,
But the ideal a, & A, + A,, & by = f annihilates M, & N, and the
assertion follows from the inclusions:

m@kAq—iqu@km 2 04+f 3 C@kAq-i"Aq@kc.

4. Conjectures

It is natural to conjecture that theorem 1 extends to all regular rings. On
this subject, one can make the following remarks:

a) Theorem 1 remains true without any regularity hypothesis if M is
of the form A/(z;,.. ,z;), the z; being an A-sequence. Then,
indeed, M is of finite homological dimension, the Tor;-“(M, N) are
the homology modules of the complex K#({z;), N) , and in particular

XCI(M1N) = eﬁ:(NfUT)w
where x is the ideal generated by the g,

b) One may assume that A is a complete regular local ring. Indeed, we
can reduce to this case by localization and completion.

¢) One may assume that M and N are of the form M = A/p,
N = Alg, p and g being prime ideals of A. Indeed y(M, N) is
“bi-additive” in M and N , and the general case follows by taking
composition series of M and N whose quotients are of the form A/p ,

Afq.

In the case of equal characteristic, we fast used b), then a) by reduction
to the diagonal. These remarks will allow us to generalize theorem 1.
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5. R)egular rings of unequal characteristic (unramified
case

Theorem 2. Theorem 1 remains true if the hypothesis “A is a regular
ring of equal characteristic’ is replaced by the more general hypothesis:

A'is a regular ring, and for every prime ideal § of A,

the Jocal ring A, is of equal characteristic,

or is of unequal characteristic and is unramified.
(As a matter of fact, it suffices that this property is satisfied when p is a
mazimal ideal. Indeed, if A is a regular local ring of unequal characteristic
and 1S unramified, every local ring A, is of the same type or is of equal
characteristic.)

Recall that a local ring of unequal characteristic is unramified if
p ¢ m?, where p denotes the characteristic of the residue field and
m the maximal ideal. Cohen has proved (see [Co], [Sal], and [Bour],
Chap. IX,§2) that an unramified regular complete local ring of unequal
characteristic is of the form k[[X1, ,Xn]l where k denotes a complete
discrete valuation ring which is unramified (notation from §2, case b). By
localization and completion, the proof of theorem 2 is reduced to that of:

Lemma 1. If A = k[[Xy,.,Xxll , where k is a complete discrete
valuation ring and if M and N are two finitely generated A-modules
such that M &4 N is of finite Ienqth then we have:

(1) x(M,N) = S0 (1) (Tor (M, N)) is > 0;

{2) dimM+dimN < dimA = n+1;

(3) Moreover x(M, N) # 0 if and ouly if dim M + dim N = dim A
(Note that we do not assume that k is unramified. The lemma is thus, in
a sense, more general than theorem 2.)

In view of remark c) of §4 it suffices to give the proof when M and N
are ‘“coprime” (ie. every endomorphism by scalar multiplication is injective
or zero). We thus consider the different cases ( 7 denotes a generator of
the maximal ideal of k):

a) 7 48 not a zero-divisor in M ¢or in N :
We know (cf. §2,b) that

Torgq(M, N) = Torf"(A, M & N),

where
C

12

k“le- 1Xn3 Yla 7Yﬂ]]
and that
dimg(M & N) = dimg M + dimg N — 1
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Moreover the Koszul complex K€ ((X; - Y;}, ©) is a free resolution of the
C-module A = C/v. Remark a) of §4 applies to x“{4,M & N), and
proves what we want.

8) = annthilates M and is not a zero-divisor in N :
Then M = M/;-rM M, and M is a module over the ring 4 =

k[Xl, ,Xn] We have a spectral sequence ([CaE], Chap. XVI, &4, 2a
and 3a):

Tor (M Tor (4, N)) == Torp+q(M,N).

The exact sequence 0 — A 5+ A — A — 0 shows that 4 is of

homological dimension 1 over A and that
A®4 N = N/xN,
and
Torf(A,N) = N = Anny(r)
= set of elements of N annihilated by .
The spectral sequence reduces to the exact sequence:

— Tor™ (M, xN) = Tor (M, N) — TorA(M, N/xN)
— Torf ,(M,,N) — ,
whence XM, N) = xA(M, N/nN) = x*(M, .N).
But we assumed that ,N =0 ; whence
x*(M, N) = x*(M,N/zN) > 0,
dimz M + dimzN/7N < n
and the second inequality is strict if and only if XX(M, N/mN)=0.Since

dimA M = dlsz and d]mIN/TI'N = dlmA N/'IFN = dlmA N - 1, we
get what we want.

~) 7 annihilates M and N :

We again consider M as an A-module, and N as an A-module; the
spectral sequence now  gives:

XM, N) = x*(M, N/zN) - x*(M, -N)

But in this case N/nN = N = N ,hence x*(M, N) = 0 ; it remains
to check that dim4 M + dims N = dimy M + dimz N < n. But since
M®4 N =M &z N is an z-module of finite length, and the lemma has
been proved for A, we have dim? M + d1m‘4N <n, qged.
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6. Arbitrary regular rings

It is not known yet ™} how to extend properties (1) and (3) of th. 1 to such
rings. On the other hand, one can prove the inequality (2) (the “dimension
formula” of algebraic geometry, cf. Chap. Ill, prop. 17). More precisely:

Theorem 3. Let A be a regular ring, p and q be two prime ideals of
A, t a prime ideal of A minimal among those containing p + g Then:

htap+htsqg >  htar

By localizing at ¢t , one may assume that A is local with maximal
ideal 1 In that case, the theorem may be reformulated as follows:
(¥) If M and N are finitely generated A-modules, then

M®aN) <oo = dimM+dimN < dimA.

To prove (*) , one may assume that A is complete. By a theorem of
Cohen [Co], A can be written as A;/aA; where A; is a ring of formal
power series over a complete discrete valuation ring, and a is a nonzero
element of A4, . If we view M and N as A; -modules, one shows as in
the case ) of §5 that

xM(M,N) =0,
and lemma 1, applied to 4;, shows that dim M + dim N <dim 4;,and

dimM +dimN < dimA = (dimA;) -1,
ged

Let us also mention the following result:

Theorem 4. Let A be a regular local ring of dimension 5, let Af and
N be two ponzero finitely generated A -modules such that M ® 4 N is of
finite length, and Jet ; be the largest integer such that Torf1 (M,N) £0
We have:

i = proj dim(M) + proj dim(N) = n. (%)

(«] In 1996, 0. Gabber has proved property (1)
> 0. See [Be] and {R4].

Moreover, half of (3) had already been proved in 1985 by P. Roberts (see
[R1],[R3]) and H. Gillet-C. Soulé [GiS]; namely

dimM +dimN < dimd = x(M,N) = 0.
It is still unknown whether the converse implication is true.

, le. the fact that y(M, N) is
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Proof (Grothendieck): Let k be the residue field of A We are going to
determine in two different ways the largest integer y such that the “triple
Tor ” Tor (M, N, k) is £ 0 :
a) The spectral sequence

Tor, (Tor (M, N), k) = Tor2, ,(M, N, K)
shows that Torf(M, N, K)=0if j>i+ pn,and that

Torf, (M, N, k) = Tor(Tor* (M, N),k) # 0,

since Torf‘(M, N) is a nonzero A -module of finite length. Hence 1 = n+44
b) The spectral sequence

Tors (M, Tor, (N, K)) == Torg, (M, N, K)
shows that r = projdim(M) + projdim(N) (use the “maximum cycle
principle”). Whence n + § = proj dim(M) + proj dim(N) , ged.

Corollary The hypotheses being those of theorem 4, in order that
Tor(M,N) = 0 for i>0,

it is necessary and sufficient that M and N are Cohen-Macaulay modules
and that dimM +dimN = n.

We can write the integer ¢ from theorem 4 in the following form:
(proj dim(M) + dim Af - n) + (proj dim(N) + dim N = n)

+ (n— dim M — dim &¥)

(dim M = depth M) + (dim N — depth N)

+ {n — dim M — dim N).

But each term between parentheses is > 0 (for the first two, according

to Chap. 1V; for the third, according to th. 3). Thus ¢ = 0 if and only if
each of these terms is zero. whence the result we want.

It

1

I

Remark. When the hypotheses of the corollary are satisfied, we have
x(M,N} = £(M ®a N);

it is probable that the converse is true, and that one has
x(M, N} < M ®4 N}

if either M or N is not Cohen-Macaulay. More generally, one may con-
jecture that each of the “higher Euler- Poincaré characteristics”

XM, N) = 3 (-1 4Tor (M,N)),  r=1,...,n,
i20
is > 0, and that y, = 0 if and only if each of the Tor;“+,.(M, N) is zero,
cf. Chap. IV, Appendix Il. This is at least true in the equal characteristic
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case, according to Auslander-Buchsbaum. That explains why the Grébner
definition of multiplicities (in terms of £(M ®4 N) ) gives the right re-
sult only when the varieties are locally Cohen-Macaulay (see the examples
constructed by Grébaer himself, [Grob]).

C: Connection with Algebraic Geometry

1. Tor-formula

Let X be an algebraic variety, defined over a field ¥ For simplicity, we
suppose that k is algebraically closed, and X is irreducible. Let U, V, W
be three irreducible subvarieties of X , W being an irreducible component
of /' N V. Suppose that W meets the open set of smooth points of
X, i.e. that the local ring A of X at W is regular (the equivalence

“smooth” = “regular” follows from the fact that the ground field k is
perfect). Then (cf. part B,§3}:
dim¥U +dimV < dimX + dim W, (1)

When there is equality in this formula, the intersection is called proper at
W (and one says that [ and V intersect properly at W ).

Let pyr and pv be the prime ideals of the local ring A which cor-
respond to the subvarieties &7 and V By hypothesis, A is regular, and
A/(py + py) has finite length. The Euler-Poincaré characteristic

dim x ‘ A
XMApu, Afpv) = Y. (=1 La(Torf (A/py, Afpv))
i=0
is defined; this is an integer > O (cf. part B).

Theorem 1.

(@ If U and V do not intersect properly at W, we have
xA(Afpu, Afwv) = 0.

(b) If U and V intersect properly at W, x*(A/py,Afpyv) is > 0
and coincides with the intersection multiplicity (X, I/ ¥, W) of
U and V at W, in the sense of Weil, Chevalley, Samuel (cf.
[W],[Ch2],Sa3]).

Assertion (a) follows from theorem 1 of part B. We will prove (b) in §4,
after having shown that the function I{X, U -V, W) = x*(4/pv. 4/pv)
satisfies the formal properties of an ‘“intersection multiplicity”.
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2. Cycles on a non-singular affine variety

Let X be a non-singular affine variety, of dimension n, , and with coordi-
nate ring A Ifa e N, and if A4 is an A -module of dimension < a, the
cycle z,(M) is defined (cf. part A); it is a positive cycle of dimension a,
which is zero if and only if dim M < a

Proposition 1. Let a,b,ce N suchthat a+b= n+c. Let M, N
be two A -mod&s such that:

dim A4 < a, dimN < b, dimM®@s N < c. (2)

Then the cycles z,(M) and z{N) are defined, they intersect properly,
and the intersection cycle z,(M} - z,(N) (defined by linearity from the
function 1 of §1) coincides with the cycle

ze{Tor*(M,N)) = Z(—l)izc(Torf‘(M, N)). (3)

Let W be an irreducible subvariety of X of dimension ¢, corre-
sponding to a prime ideal ¢ of A; let B be the local ring A, (i.e. the
local ring of X at W). By definition, the coefficient of W in the cycle
zc(TorA(M , N)) is equal to

> (-1 £p(Torf (M, N)o) = xF(M;, Vo)

Thii coefficient is thus “biadditive” in A4 and N , and is zero if either

dim A4 < aor dimN < b, cf. part B, §3. The same is obviously true
for the coefficient of W in z,(M) z»(N) We are thus reduced to the
case where M = A/p, N = A/qg, the ideals p and q being prime and
corresponding to irreducible subvarieties UV and V of X of respective
dimensions a and b In this case, the coefficient of W in zc(TorA(M, N))
is equal to xZ(B/pB,B/gB) = I(X,U -V, W) , ged.

Remarks.

1) Proposition 1 gives a very convenient method for computing the inter-
section product z - " of two positive cycles z and 2’ , of dimensions a
and b , intersecting properly: choose modules Af and N for the cycles
z and z' such that dim M&N has the desired dimension (this is auto-
matically the case if Supp(M) = Supp(z) and Supp(N) = Supp(z'} ),
and the cycle z-z" we want is simply the “cycle of Tor(M, N) ", ie. the
alternating sum of the cycles of Tor;{}, N)

2) In the case of algebraic varieties which are not necessarily affine,
coherent sheaves replace modules. If M is such a sheaf, with
dim Supp(M) < a (which we also write dim M < a), one defines in
an obvious way the cycle z,(M). Proposition 1 remains valid, with


Unknown

Unknown

Unknown
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the modules Tor (M, N) being replaced by the sheaves Tor;(M, N}
the Tor being taken over the structural sheaf Oy of X

3. Basic formulae

We shall see that the product of cycles, defined by means of the function
I from §1 (i.e. by taking the “Tor -formula” as definition), satisfies the
fundamental properties of intersection theory; these properties being local,
we may suppose that the varieties we consider are affine and non-singular.
This will allow us to apply proposition 1 from the preceding section.

a ) Commutativily
Obvious, because of the cotnmutativity of each Tori

b ) Associativity

We consider three positive cycles 7, z, z of respective dimensions
a, a', @’ We assume that the products z 2z’ , (z z) 2”7, 2/ 2" and
z (2’ 2') are defined, and we have to prove that

@ zn’) M= oz (zr z").
Let A be the coordinate ring of the given ambient variety X , and let 7
be its dimension. Choose an A -module M with support equal to that of
z, and such that z,(M) =z ; let M and M” be such modules for 2’
and t”

The desired formula is proved from the “associativity” of Tor Ac-
cording to [CaE], p 347, this associativity is expressed by the existence of
the triple Tor Tor (M, M', M") and the two spectral sequences:

TorA(M Tor (M', M) = Tors, (M; M M) (4)
TorA(Tor (M, M), M") = Torp+q(M, M, M™). (5)
Set¢=—a+a + a”"=-2n,and b =a + 4" =7 Since the intersections
considered are proper, we have
dmM oM’ < b and dmMeMeM' < .
One can thus define the cycles
yo = z(Tory (M, M),
.T.p,q = ZC(TOI' (M TorA(Mra AJ”)))J
x; = z{Tor} (M, M, M7)).
The invariance of Eyler-Poincaré characteristics through a spectral se-
quence, applied to (4), gives:

Z 1)13% Z {~1 L

i
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But proposition 1 shows that

Z(ﬁl)l’mp,q = zy and Z(_l)qu — o
P ¢
Thus
Z (—Dfa; = z- (& t).

The same argument, appl?ed to (5), gives
Z (-1'z; = (z &) 2,

whence the associativity formula we want

c) Product formula

Consider two non-singular varieties X and X', and two cycles z; ,
zg (resp. z1 , 25 ) on X (resp. X). We suppose that z; zy and 2 2,
are defined. Then the product cycles z; x z; and z x zj (on X x X))
intersect properly, and we have:

(m x 21) (22 x 23) = (;1 23) X (2] - 2}). (6)
Indeed, we may assume that these cycles are > 0, and that X and X
are affine, with coordinate rings A and A If My, M., M{, M} are
modules corresponding to z; , 23, 2}, 25, one checks that the cycle asso-
ciated to M &, M| (viewed as a module over the ring B = A®; A" of
X x X') is equal to z; x 2 | this fact could even be taken as the definition
of the direct product of cycles |. The formula tg be proved then follows
from the “K{inneth formula™

Torf (M, ® Mj, My @ M) = €D Torf(My, My) @ Tor] (M], Mj).
i+j=h

d) Reduction to the diagonal
Let A be the diagonal of X x X We have to show the formula
2 2= (21 X z9) A (7)
valid when the cycles z; and z3 intersect properly.
Let A be the coordinate ring of X, and let B = A ®; A be that

of X x X If M; and M, are modules corresponding to z; and 2z
respectively. we have

Torf (M, Mz) = Tor?(M; & Ma, A),

cf. part B, §1. Formula (7) then follows by taking the alternating sum of
the cycles on both sides.


Unknown
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4. Proof of theorem 1

We want to show that the functions | and i coincide. We begin by
treating the case where [/ is a complete intersection in W ; this means
that the ideal py of §l is generated by h elements zi,..zp, with
A=dimX —dimU =dimV —dimW .

We have Tor(A/pu,A/pv) = Hi(x, Afpy), cf. Chap. IV, cor. 2 to
prop. 3. Hence

XA Afpe, Afpy) = > (CV UH(x Alpyv)),

and by theorem 1 of Chap. IV, this gives
x*(Afvu, Afpv) = ex(Afpv),

where x denotes the ideal of A/py generated by the images of the Ti
But according to [Sa4], p. 83, the multiplicity ex{A/pv) is equal to
i(X, U v, W) , which proves the equality | = i in this case.

The genera case reduces to the previous one, by using reduction to
the diagonal, which is valid for both | and ¢! Since A is non-singular, it
is locally a complete intersection, and the hypotheses of the preceding case
are satisfied, ged.

5. Rationality of intersections

For simplicity we restrict, ourselves to the case where X is an affine variety
with coordinate ring A over k. Let kg be a subfield of k. We say (in
Weil style) that X is defined gver kg if one has chosen a kp -subalgebra
Ap of A suchthat A= Ay &y, k

Let My be an Ap-maodule (finitely generated, as usual), with
dim My < a. We can view My &g, k as an A-module, and we have
dim{My ®k) < a, which alows us to define the cycle z,{Mq & k) A cycle
z of dimension a on X is called rational over ky if it is the difference of
two cycles zo{Mp ® k) and 2,{M} ® k) obtained in this way. The abelian
group of cycles rational over k3 has a basis consisting of the “prime cy-
cles’; z,{Ay/po ® K) , where pg ranges gver the set of prime ideals of Ag
such that dim(4g/py) = a This definition of the rationality of cycles is
equivalent to that given by Weil in [W1; this non-trivia fact can be proved
by interpreting the “order of inseparability” which appears in Weil's book
in terms of tensor products of fields (cf. [ZS], Chap. IlI, p. 118, th. 38).

Theorem 2 (Weil). Let » and z' be two cycles on X , rational over
ko , and such that z 2’ is defined. Then z- 2’ is rational over kg
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We can assume that z and ' are positive, thus corresponding to
Ap -modules My and M The theorem then follows from the formula:

Tor (Mo ® k, My ® k) = Tor (Mo, M}) ® k.
6. Direct images

Let f X — Y be a morphism of algebraic varieties (over an agebraically
closed field k , to fix ideas), and let z be a cycle on X of dimension g,
The direct image f.(z)} of z is defined by linearity, starting from the
case where z = W , an irreducible subvariety of X In this case, set:

0 if the closure W' of f(W) has dimension < a,

fi(W) = gy Fdm W =a, whered = [k(W) : k(W] is
the degree of themap f : W — W".

This operation preserves dimension. It is mainly interesting when j is
proper (do not confuse the properness of a morphism with that of an in-
tersection!), because of the following result:

Proposition 2. Let f: X — Y be g proper morphism, Jet z be g
cycle on X of dimension a, and Jet M be a coherent sheaf on X such
that z, (M) = z Let R?f (M) be the ¢ -th direct jmage of M , which is
a coherent sheaf onY ([EGA], Chap. Ill, th. 4.1.5).

{a) We have dimR'f(M) < a and dim RIf{M) < afor ¢ > 1.
(b) We have

folz) = w(BROF(M)) = Y (-1)%z(RIF(M)).
q

The proof is done by reducing to the case where the restriction of f
to the support of zisa finite morphism, in which case the RYf(AM) are
zero for ¢ > 1

7. Pull-backs

They can be defined in diverse situations. We consider only the following:

Let T : X — Y be a morphism, with Y being non-singular, and let
z and y be cycles on X and Y respectively. Set |z| = Supp(z) and
'yl = Supp(y) Then:

dimiz] N f~'{jy|) > dim |z| - codim |y].

The “proper” case is that where there is equality. In that case, one defines
an intersection cycle g -y y with support contained in {z| N f=1(|y|) by
either one of the following methods:
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a) Reduction to a standard intersection: assume X to be affine (the
problem being local), which alows it to be embedded in a non-singular
variety Vv , for example an affine space. The map 2z =+ (z, f(z)) embeds
Xinto ¥ x Y , and thus allows us to identify any cycle £ on X with a
cycle y(x) on vV x 'Y Then one defines x -y y as the unique cycle on X

such that:
vz ry) = @) (V xy), (8)
the intersection product of the right hand side being computed on the non-

singular variety vV x Y One checks that the result obtained is independent
of the chosen embedding X — Vv

b) Choose coherent sheaves M and A over X and Y of respective
cycles x and y , and define z -¢ y as the alternating sum of the cycles of
the sheaves Tot,{M, f*(N)), the Tot; being taken over Ox (and being
sheaves on X }; since Y is non-singular, the Ror; are zero for : >dimY
and the alternating sum is finite.

Specid case: Take z = X The cycle 2 :¢ y is then written f*(y) and is
called the pull-back of y Recall the conditions under which it is defined:
i) Y is non-singular,
i) codim f~'(|y|) = codim jy].
No hypothesis on X is necessary.

Remarks.
1) When X is non-singular, we have
zpy = z ) (9)
provided that both sides are defined.

2) The specid case when Y is a line is the starting point of the
theory of linear equivalence of cycles.

Projection formula
It is the formula:

fulz s yy = file) -0, (10)
valid when f is proper and both sides are defined.

The proof can be done by introducing sheaves M and N correspond-
ing to the cycles y and y , and using two spectral sequences with the same
ending and with the E, terms being respectively

RIf(Tor,(M, N} and Tor,( R fIM),N),
the Tor being taken over Oy (cf. [EcA]: Chap. III, prop. 6.9.8).
When X is non-singular, this formula takes the standard form:

flz- W) = fla) v (11)
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Exercises  (see dso [F], Chap. 8).
1) Tet z & Y L x, and let ¢ ,y, z be positive cycles on

X ,Y ,Z Suppose that X and Y are non-singular. Prove the follow-
ing formula (valid whenever the products which appear are defined):

gy sx)=(2g0) g T=(2192) gy (12)
Recover (for f = g = 1) the associativity and commutativity of the inter-
section product. For X =Y , f = 1, deduce the formula

g'(z-y) = g'(z) g¥ (13)
whence ¢*(x y) = g'(2) g*(y) when Z is non-singular.

2) Same hypotheses as in 1), with the difference that Y may be
singular, but that g is proper (it suffices that its restriction to Supp(z) is
s0). Prove the formula:

ge(2 ogg ) = 9u(2) oy T, (14)
valid when both sides are defined. (For f = 1, one recovers (10).)

3) Give the conditions of validity for the formula
(11 X g2} fixfo (T2 X 22} = (y1 o510 %1) X (2 o g 22)- (15)

4) Let f:Y =X, ff:Y = X', with X , X" non-singular, let
g=(fFf:Y = XxX". Let x,2',y becycleson X,X' Y. Give
conditions of validity for the formula

(Y sa)pS =(y'I'5) je=y g (@xa).

5 Let f: Y -5 Xand g : Z — X, with X non-singular. Let
y , zbecycleson Y , Z Define (under the usual properness conditions) a
“fiber product” y -x z, which is a cycle on the fiber product Y xx Z of
Y and Z over X What does this give when g = 17 And when X is
reduced to a point?

8. Extensions of intersection theory

It is clear that the  Tor -formuld’ alows us to define the intersection of
two cycles in more general cases than those of classcal agebraic geometry.
For example:

i) It applies to analytic (or fond) spaces. There is no difficulty, since
every local ring which is involved is of equal characteristic. In the case
of complex anaytic spaces, the intersection product so obtained coincides
with that defined topologically by Borel-Haefliger, cf. [BoH]; this is proved
by reduction to the “elementary” case 4.10 of their paper.
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ii) It applies to every regular scheme X provided that the conjectures
of part B have been checked for the local rings of such schemes; this is
especially the case when these local rings are of egual characteristic. [ Even
when X is a scheme of finite type over a field k , this gives an intersection
theory a little more general than the usual one; indeed, if k is not perfect,
it may happen that X is regular without being smooth over k: but Weil's
theory applies only to the smooth case. |

iii) More generally, intersection theory applies to every scheme X
which ig smooth gwer a discrete valuation ring C One can indeed show
that the local rings of X satisfy the conjectures from part B [ the proof is
done by a process of reduction to the diagonal which is analogous to and
simpler than — the one used in part B, §5 |. This case is important, be-
cause it gives the reduction Of cycles of Shimura, [Sh]. We briefly indicate
how:

Let k (resp. K ) be the residue field of C {resp. its field of fractions).
The scheme X is a disjoint sum of its closed subscheme X}, = X @+ k and
its open subscheme Xp =X & K ; the scheme X; is of finite type over
k (it is an “algebraic variety” over k ); similarly. X is of finite type over
K One sometimes says, rather incorrectly, that Xy is the reduction of
Xi.

Every cycle on X, defines, by injection, a cycle on X of the same
dimension; every cycle z of dimension a on Xy defines by closure a
cycle 7 of dimension a + 1 on X The group Z,(X) of cycles on X of
dimension x thus decomposes into a direct sum:

Zo(X) = Zn(Xk) @ Zn-1(Xi).

The projection Z,{X) — Z,_1{X§) is given by the restriction of cycles.
From the point of view of sheaves, the cycles from Z(Xj} correspond to
coherent sheaves M over X which are annihilated by the uniformizer
7 of C; those from Z(Xg) correspond to coherent sheaves M which
are flat over C (i.e. torsion-free); this decomposition into two types has
already played a role in part B, §5.

Now let z € Z,(Xk) , and let 7 be its closure. We can view X as
a cycle of codimension 1 on X The intersection product

= Xe-Z (computed on X )

belongs to Z,{Xy)}; it is called the reduction of the cycle z Moreover
this operation can be defined without speaking of intersections (and with-
out any hypothesis of smoothness or regularity); from the point of view of
sheaves, it amounts to associating to every coherent sheaf M that is flat
over C the sheaf M/xM . The hypothesis of smoothness comes only for
proving the formal properties of the operation of reduction: compatibility
with products, direct images, intersection products; the proofs can be done,
as in the preceding sections, by working with identities between sheaves,
or, at worst, with spectral sequences.

The intersection theory on X gives more than the mere reduction OF
cycles. Thus if z and 2’ are cycles on Xk, the component of - T
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in Z(X;) gives an interesting invariant of the pair ¢ , =’ (assuming, of
course, that the intersection of ¥ and T’ is proper); this invariant is related
to the “local symbols” introduced by Néron, [Né].
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