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Preface

The present book is an English translation of

Alghbre  Locale - Multipliciths

published by Springer-Verlag as no. 11 of the Lecture Notes series.

The original text was based on a set of lectures, given at the Collbge de
France in 1957-1958, and written up by Pierre Gabriel. Its aim was to give
a short account of Commutative Algebra, with emphasis on the following
topics:

a) Modules (as opposed to Rings, which were thought to be the only
subject of Commutative Algebra, before the emergence of sheaf theory
in the 1950s);

b) Homologicul methods, B la Cartan-Eilenberg;
c) Intersection multiplicities, viewed as Euler-Poincarh  characteristics.

The English translation, done with great care by CheeWhye Chin,
differs from the original in the following aspects:
- The terminology has been brought up to date (e.g. “cohomological
dimension” has been replaced by the now customary “depth”).
- I have rewritten a few proofs and clarified (or so I hope) a few more.
- A section on graded algebras has been added (App. III to Chap. IV).
- New references have been given, especially to other books on Commuta-
tive Algebra: Bourbaki (whose Chap. X has now appeared, after a 40-year
wait), Eisenbud, Matsumura, Roberts, . . . .

I hope that these changes will make the text easier to read, without
changing its informal “Lecture Notes” character.

J-P. Serre,
Princeton, Fall 1999
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Introduction

The intersection multiplicities of algebraic geometry are equal to some
“Euler-Poincare  characteristics” constructed by means of the Tor func-
tor of Cartan-Eilenberg. The main purpose of this course is to prove this
result, and to apply it to the fundamental formulae of intersection theory.

It is necessary to first recall some basic results of local algebra: primary
decomposition, Cohen-Seidenberg theorems, normalization of polynomial
rings, Krull dimension, characteristic polynomials (in the sense of Hilbert-
Samuel).

Homology comes next, when we consider the multiplicity eg (E, r) of
an ideal of definition q = (ICI,  . . , 2,)  of a local noetherian ring A with
respect to a finitely generated A -module E . This multiplicity is defined
as the coefficient of n’/r! in the polynomial-like function n ++  e,(E/qnE)
[here PA is the length of an A -module F 1.  We prove in this case the
following formula, which plays an essential role in the sequel:

e,(E,  r) = c (-l)i  ~A(&(x,  E)) (*I
i = O

where the Hi(x,  E) denotes the homology modules of the Koszul complex
constructed on E by means of x = (~1,  . . . , z,)

Moreover this complex can be used in other problems of local algebra,
for example for the study of the depth of modules over a local ring and of
the Cohen-Macaulay modules (those whose Krull dimension coincides with
their depth), and also for showing that regular local rings are the only local
rings whose homological dimension is finite.

Once formula (*) is proved, one may study the Euler-Poincare charac-
teristic constructed by means of Tor . When one translates the geometric
situation of intersections into the language of local algebra, one obtains
a regular local ring A, of dimension n , and two finitely generated A -
modules E and F over A, whose tensor product is of finite length over
A (this means that the varieties corresponding to E and F intersect only
at the given point). One is then led to conjecture the following statements:
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(i) dim(E) +dim(F)  5 n ( “dimension formula”).

(ii) XA(&  F)  = ~~=O(-l)i  ~A(To$(E,  8’))  is 10.

(iii) XA(E, F)  = 0 f di an only if the inequality in (i) is strict.

Formula (*)  shows that the statements (i), (ii) and (iii) are true if
F = A/(x1,... , z,)  , with dim(F) = n - r . Thanks to a process, using
completed tensor products, which is the algebraic analogue of “reduction to
the diagonal”, one can show that they are true when A has the same char-
acteristic as its residue field, or when A is unramified. To go beyond that,
one can use the structure theorems of complete local rings to prove (i) in
the most general case. On the other hand, I have not succeeded in proving
(ii) and (iii) without making assumptions about A, nor to give counter-
examples. It seems that it is necessary to approach the question from a
different angle, for example by directly defining (by a suitable asymptotic
process) an integer. >_ 0 which one would subsequently show to be equal
to  XA(E,  F)  .

Fortunately, the case of equal characteristic is sufficient for the ap-
plications to algebraic geometry (and also to analytic geometry). More
specifically, let X be a non-singular variety, let V and W be two irre-
ducible subvarieties of X , and suppose that C = V n W is an irreducible
subvariety of X , with:

dimX+dimC  = dimV+dimW ( “proper” intersection).

Let A, Av , Aw be the local rings of X , V and W at C . If

i(V  . w, c; X)

denotes the multiplicity of the intersection of V and W at C (in the
sense of Weil, Chevalley, Samuel), we have the formula:

i(V . W, C; X) = XA(A”, Aw). (**)
This formula is proved by reduction to the diagonal, and the use of

(*)  . In fact, it is convenient to take (**)  as the definition of multiplicities.
The properties of these multiplicities are then obtained in a natural way:
commutativity follows from that for Tor ; associativity follows from the two
spectral sequences which expresses the associativity of Tor ; the projection
formula follows from the two spectral sequences connecting the direct im-
ages of a coherent sheave and Tor (these latter spectral sequences have
other interesting applications, but they are not explored in the present
course). In each case, one uses the well-known fact that Euler-Poincare
characteristics remain constant through a spectral sequence.

When one defines intersection multiplicities by means of the Tor-
formula above, one is led to extend the theory beyond the strictly “non-
singular” framework of Weil and Chevalley. For example, if f : X -+  Y

Introduction .”XlU

is a morphism of a variety X into a non-singular variety Y , one can
associate, to two cycles x and y of X and Y , a “product” x .f  y which
corresponds to x n f-l(y) (o course, this product is only defined underf
certain dimension conditions). When f is the identity map, one recovers
the standard product. The commutativity, associativity and projection
formulae can be stated and proved for this new product.



Chapter I. Prime Ideals
and Localization

This chapter summarizes standard results in commutative algebra. For
more details, see [Born],  Chap. II, III, IV.

1. Notation and definitions

In what follows, all rings are commutative, with a unit element 1 .
An ideal p  of a ring A is called prime if A/p is a domain, i.e. can

be embedded into a field; such an ideal is distinct from A .
An ideal m of A is called maximal if it is distinct from A, and

maximal among the ideals having this property; it amounts to the same as
saying that A/m is a field. Such an ideal is prime.

A ring A is called semilocal if the set of its maximal ideals is finite.
It is called local if it has one and only one maximal ideal m ; one then
has A - m = A* , where A* denotes the multiplicative group of invertible
elements of A .

2. Nakayama’s lemma

Let t be the Jacobson radical of A, i.e. the intersection of all maximal
ideals of A . Then II: E  t if and only if 1 -zy is invertible for every y E  A.

Proposition 1. Let A4  be a finitely generated A -module, and q be
an ideal of A contained in the radical t of A. If qM = M , then M = 0 .

Indeed, if M is #  0, it has a quotient which is a simple module, hence
is isomorphic to A/m, where m is a maximal ideal of A ; then mM # M ,
contrary to the fact that q C m .
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Corollary 1. If N is a submodule of M such that M = N + qM,
we have M = N.

This follows from prop. 1, applied to M/N .

Corollary 2. If A is a local ring, and if M and N are two finitely
generated A -modules, then:

M~I~N  = 0 M (M = 0 or N = 0).

Let m be the maximal ideal of A , and k the field A/m Set

% =  M/mM  a n d  x =  N/mN.

If M mA  N is zero, so is % @k  m ; this implies % = 0 or R = 0 , whence
M = 0 or N = 0, according to prop. 1.

3. Localization (cf. [Bour], Chap. II)

Let S be a subset of A closed under multiplication, and containing 1 . If
M is an A-module, the module S-lM (sometimes also written as M,y  )
is defined as  the set of “fractions” m/s . m E M , s E S , two fractions
m/s and m’/s’  being identified
that s”(s’m  - sm’) = 0 This
S-lA . We have natural maps

if and only if there exists s” E S such
also applies to M = A, which defines

A -+  S-lA

given by a H a/l  and m H
AnnM(S),  i.e. the set of m E
sm=O.

and M --)  S’M

m/l  The kernel of M --+ S-lM is
M such that there exists s E S with

The multiplication rule
a / s  a//s’  =  (aa’)/(ss’)

defines a ring structure on S-lA Likewise, the module S-lM has a
natural S-IA -module structure, and we have a canonical isomorphism

S-~AC%~  M z S-‘M.

The functor M H S-lM is exact, which shows that S-lA is a flat
A -module (recall that an A-module F is called flat if the functor

MHF@J~M

is exact, cf. [Bour], Chap. I).
The prime ideals of S-l A are the ideals S-‘p  , where p ranges over

the set of prime ideals of A which do not intersect S; if p is such an
ideal, the preimage of S-‘p  under A -+  S-lA is p .

I. Prime Ideals and Localization 3

Example (i). If p is a prime ideal of A, take S to be the complement
A - p of p . Then one writes Ap, and Mp  instead of 9’A  and SvlM.
The ring Ap, is a local ring with maximal ideal PA,,  , whose residue field is
the field of fractions of A/p  ; the prime ideals of A,, correspond bijectively
to the prime ideals of A contained in p .

It is easily seen that, if M # 0, there exists a prime ideal p with
Mp  # 0 (and one may even choose lo to be maximal). More generally, if
N is a submodule of M , and x is an element of M , one has x E N if
and only if this is so ‘locally”, i.e. the image of x in M,,  belongs to N,,
for every prime ideal p (apply the above to the module (N + Ax)/N .

Example (ii). If x is a non-nilpotent element of A, take S to be the
set of powers of x . The ring S-‘A  is then # 0, and so has a prime ideal;
whence the existence of a prime ideal of A not containing x . In other
words:

Proposition 2. The intersection of the prime ideals of A is the set of
nilpotent elements of A .

Corollary . Let a and b be two ideals of A . The following properties
are equivalent:
(1) Every prime ideal containing a contains b (i.e. V(a) c V(b) with

the notation of $5 below).
(2) For every x E b there exists n 1 1 such that x” E a.

If b is finitely generated, these properties are equivalent to:
(3) There exists m 2 1 such that 6” c a.

The implications (2) + (1) and (3) + (2) are clear. The implication
(1) + (2) follows from proposition 2, applied to A/a. If b is generated
by xi,.,. ,x,  and if xp  E a for every i , the ideal 6” is generated by the
monomials

Xd =xp  ...x$ with Edi  =m.
If m > (n - 1)~ , one of the di  ‘s is 2 n , hence xd  belongs to a, and we
have bm C a . Hence (2) + (3)

Remark. The set of x E A such that there exists n(x) 2 1 with
xn(l) E a is  an  ideal,  called the radical of a, and denoted by rad(a)  .
Condition (2) can then be written as b c rad(a)  .
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4. Noetherian rings and modules

An A -module M is called noetherian if it satisfies the following equiv-
alent conditions:

a) every ascending chain of submodules of M stops;
b) every non-empty family of submodules of M has a maximal element;
c) every submodule of M is finitely generated.

If N is a submodule of M , one proves easily that:

M is noetherian L N and M/N are noetherian.

The ring A is called noetherian if it is a noetherian module (when
viewed as  an A-module), i.e. if every ideal of A is finitely generated. If
A is noetherian, so are the rings A[Xl,  . . . , Xn]  and A[[X,,  . . . , X,]]  of
polynomials and formal power series over A, see e.g. [Bour], Chap. III, $2,
no. 10.

When A is ncretherian, and M is an A-module, conditions a), b), c)
above are equivalent to:
d) M is finitely generated.

(Most of the rings and modules we shall consider later will be noethe-
rian.)

5. Spectrum ([Bour], Chap. II, $4)

The spectrum of A is the set Spec(A) of prime ideals of A. If a is an
ideal of A, the set of p E Spec(A) such that a c p is written as V(a)
We have

V(an  b) = V(ab) = V(a) U V(b) and V(Eai) = flV(ai).

The V(a) are the closed sets for a topology on Spec(A) , called the Zariski
topology. If A is noetherian, the space Spec(A)  is noetherian: every
increasing sequence of open subsets stops.

If F is a closed set # 8 of Spec(A) , the following properties are
equivalent :

i) F is irreducible, i.e. it is not the union of two closed subsets distinct
from F;

ii) there exists p E Spec(A) such that F = V(p) , or, equivalently, such
that F is the closure of {p} .

Now let M be a finitely generated A -module, and a = Ann(M) its
annihilator, i.e. the set of a E A such that a~  = 0, where a~  denotes
the endomorphism of M defined by a.
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Proposition 3. If p is a prime ideal of A , the  following properties are
equivalent:
4 Mp#O;
b) P E V(a).

Indeed, the hypothesis that M is finitely generated implies that the
annihilator of the A, -module MP  is a,, , whence the result.

The set of p E Spec(A) having properties a) and b) is denoted by
Supp(M)  , and is called the support of M. It is a closed subset of
Spec(A) .

Proposition 4.
a) If 0 --+ M’  -+ M ---f M”  + 0 is an exact  sequence  of  finitely  gener-

ated  A -modules, then

Supp(M)  = Supp(M’)  u Supp(M”).

b) If P and  Q are  submodules  of a finitely  generated  module  M , then

Supp(M/(P  n Q)) = Supp(MIP)  u Supp(MIQ).
c) If M and N are  two  finitely  generated  modules,  then

Supp(M @‘A  N) = Supp(M)  n Supp(N).

Assertions a) and b) are clear. Assertion c) follows from COT.  2 to
prop. 1, applied to the localizations  Mp and N,,  of M and N at p .

Corollary . If M is a finitely  generated  module,  and  t an ideal of A,
then

Supp(M/rM)  = Supp(M)  n V(r).

This follows from c) since M/rM  = M @A  A/r.

6. The noetherian case

In this section and the following ones, we suppose  that A is noetherian.
The spectrum Spec(A) of A is then a quasi-compact noetherian

space. If F is a closed subset of Spec(A) , every irreducible subset of
F is contained in a maximal irreducible subset of F , and these are closed
in F ; each such subset is called an irreducible component of F The
set of irreducible components of F is finite; the union of these components
is equal to F .
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The irreducible components of Spec(A) are the V(p) , where p ranges
over the (finite) set of minimal prime ideals of A . More generally, let M
be a finitely generated A -module, with annihilator a. The irreducible
components of Supp(M)  are the V(p),  where p ranges over the set of
prime ideals having any of the following equivalent properties:

i) p contains a, and is minimal with this property;
ii) p is a minimal element of Supp(M)  ;
iii) the module M,,  is # 0, and of finite length over the ring A,

(Recall that a module is of finite length if it has a Jordan-H6lder
sequence; in the present case, this is equivalent to saying that the module
is finitely generated, and that its support contains only maximal ideals.)

7. Associated prime ideals ([Bour], Chap. IV, $1)

Recall that A is assumed to be noetherian.
Let M be a finitely generated A -module, and p E Spec(A) . A prime

ideal p of A is said to be associated to M if M contains a submodule
isomorphic to A/p, equivalently if there exists an element of M whose
annihilator is equal to p . The set of prime ideals associated to M is
written as Ass(M) .

Proposition 5. Let P be the set of annihilators of the nonzero  elements
of M . Then every maximal element of P is a prime ideal.

Let m be an element # 0 of M whose annihilator p is a maximal
element of P . If xy E p and x $ p , then xm # 0, the annihilator of xm
contains p , and is therefore equal to p , since p is maximal in P . Since
yxm = 0, we have y E Ann(xm) = p , which proves that p is prime.

Corollary 1. If M # 0, then Ass(M) # 0.

Indeed, P is then non-empty, and therefore has a maximal element,
since A is noetherian.

Corollary 2. There exists an increasing sequence (Mi)o<i<n  of sub-- -
modules of M, with MO  = 0 and M, = M, such that, for 1 5 i 5 n  ,

M,/M,-1 is isomorphic to A/p%,  with pi  E Spec(A) .

If M # 0, corollary 1 shows that there exists a submodule MI  of M
isomorphic to A/p1  , with p1 prime. If MI  # M , the same argument, ap-
plied to M/Ml , proves the existence of a submodule M2  of M containing
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Ml and such that Mz/Ml  is isomorphic to A/p,,  with p2 prime, and
so on. We obtain an increasing sequence (M%)  ; in view of the noetherian
character of M , this sequence stops; whence the desired result.

Exercise. Deduce from corollary 1 (or prove directly) that the natural
map

M--+ I-I MV

is injective.
pCAss(M)

Proposition 6. Let S be a subset of A closed under multiplication
and containing 1; let p E Spec(A) be such that S n p = 0. In order that
the prime ideal S-‘p  of S-lA is associated to S-lM , it is necessary and
sufficient that p is associated to M .

(In other words, Ass is compatible with localization.)

If p E Ass(M) , there is an element m E M whose annihilator is p ;
the annihilator of the element m/l of S-lM is S-‘p  ; this shows that
S-$I E Ass(S-‘M).

Conversely, suppose that S-‘p  is the annihilator of an element m/s
of S-lM,  with m E M, s E S. If a is the annihilator if m , then
s-la = s-lp , which implies a c p , cf. 53,  and also implies the existence
of s’ E S with stp c a. One checks that the annihilator of s’m  is p ,
whence p E Ass(M) .

Theorem 1. Let (Mi)o<i<n be an increasing sequence of submodules- -
of M, with MO  = 0 and M, = M, such that, for 1 5 i 5 n, Mi/Mi-1
is isomorphic to A/pi  , with pi  E Spec(A) , cf.  corollary 2 to proposition 5.
Then

Ass(M)  c {PI,. . . >~n)  c Supp(M),
and these three sets have the same minimal elements.

Let p E Spec(A) . Then Mv  # 0 if and only if one of (A/pi),  is # 0,
i.e. if and only if p contains one of pi  . This shows that Supp(M)  contains
{Pl,...  ,Pn), and that these two sets have the same minimal elements.

On the other hand, if p E Ass(M) , the module M contains a sub-
module N isomorphic to A/p. Let i be the smallest index such that
N n Mi # 0 ; if m is a nonzero  element of N n Mi  , the module Am.
is isomorphic to A/p, and maps injectively  into Mi/Mi-1 2 A/pi  ; this
implies p = pi  , whence the inclusion Ass(M) c {pi, . . , pn} .

Finally, if p is a minimal element of Supp(M)  , the support Supp(Mv)
of the localization of M at p is reduced to the unique maximal ideal
pA,  of A, . As Ass(M,)  is non-empty (car.  1 to prop. 5) and contained
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P $ Ass(Q(P))  3 and maximal for that property. One has Q(p) # M .
Define E(p) as  M/Q(p)  . If q E Spec(A) is distinct from p , E(p) cannot
contain a submodule M/Q(p) isomorphic to A/q , since we would have
p 4 Ass(M)  by proposition 9, and this would contradict the maximality
o f  Q(P).  Hence  Ass(E(P))  c {P),and equality holds since E(p) # 0,
cf. car.  1 to prop. 5. The same corollary shows that the intersection of the
Q(p) , for p E Ass(M) , is 0 , hence the canonical map

is injective.

Remark. When p is a minimal element of Ass(M) , the kernel of the
map M + E(p) is equal to the kernel of the localizing map A4 ---f MP  :
hence is independent of the chosen embedding. There is no such uniqueness
for the embedded primes.

8. Primary decompositions ([Bour], Chap. IV, $2)

Let A, M be as above. If p  E Spec(A) , a submodule Q of M is called
a p-primary submodule of M if Ass(M/Q) = {p} .

Proposition 11. Every submodule N of M can be written as an
intersection:

N = (7 Q(P)
pEAss(M/N)

where Q(p) is a p -primary submodule of M .

This follows from prop. 10, applied to M/N

Remark. Such a decomposition N = nQ(p)  is called a reduced
(or minimal) primary decomposition of N in A4.  The elements of
Ass(M/N)  are sometimes called the essential prime ideals of N in A4

The most important case is the one where M = A, N = q , with q
being an ideal of A. One then says that q is p  -primary if it is p  -primary
in A ; one then has p”  c q c p  for some n > 1, and every element of
A/q which does not belong to p/q is a non-zero-divisor.

(The reader should be warned that, if a is an ideal of A , an element
of Ass(A/a)  is often said to be “associated to a”, cf. e.g. [Eis], p.  89. We
shall try not to use this somewhat confusing terminology.)

Chapter II. Tools

A: Filtrations and Gradings

(For more details, the reader is referred to [Bour], Chap. III.)

1. Filtered rings and modules

Definition 1. A filtered ring is a ring A given with a family (An)nE~
of ideals satisfying the following conditions:

Ao  = A, &+I  c An, 44  c A,+,.
A filtered module over the filtered ring A is an A-module M given
with a family (Mn)nE~  of submodules satisfying the following conditions:

MO  = M, Mn+l  c Mn, 444  c Mp+g.

[ Note that these definitions are more restrictive than those of [Bour],
lot.  cit. ]

The filtered modules form an additive category FA , the morphisms
being the A -linear maps u : M -+  N such that u(M,)  c N, . If P is
an A -submodule of the filtered module M , the induced filtration on
P is the filtration (P,)  defined by the formula P, = P n M, . Similarly,
the quotient filtration on N = M/P is the filtration (N,) where the
submodule N,  = (h/r,  + P)/P is the image of Mn  .

In F,J  , the notions of injective (resp. surjective)  morphisms are the
usual notions. Every morphism ‘1~  : M + N admits a kernel Ker(u) and a
cokernel Coker(u) : the underlying modules of Ker(u) and Coker(zL)  are
the usual kernel and cokernel, together with the induced filtration and the
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quotient filtration. We similarly define Im(u) = Ker(N -+  Coker(u)) and
Coim(u) = Coker(Ke u -+  M) . We have the canonical factorization:r(  )

Ker(u) -+ M -+ Coim(u) 5 Im(u) -+ N + Coker(u),

where 13 is bijective. One says that u is a strict morphism if 0 is an
isomorphism of filtered modules; it amounts to the same as saying that
u(M,)  = N,  n u(M) for each n E Z . There exist bijective morphisms
that are not isomorphisms ( FA is not an abelian  category).

Examples of filtrations.

a) If m is an ideal of A, the m-adic filtration of A (resp. of
the A-module M ) is the filtration for which A, = mn  for n 2 1 (resp.
M, =mnM  for n-2 1).

b) Let A be a filtered ring, N a filtered A-module, and M an
A -module. The submodules HomA(M, N,)  of HomA  (M, N) define on
HomA(M, N) a filtered module structure.

2. Topology defined by a filtration

If M is a filtered A-module, the M, are a basis of neighborhoods of 0
for a topology on M compatible with its group structure (cf. Bourbaki,
TG III).  This holds in particular for A itself, which thus becomes a topo-
logical ring; similarly, M is a topological A-module.

If m is an ideal of A, the m -adic topology on an A -module M is
the topology defined by the m -adic filtration of M

Proposition 1. Let N be a submodule of a filtered module M . The
closure x of N is equal to n(N + M,)  .

Indeed, saying that x does not belong to m means that there exists
n E Z such that (x+M,)nN  = 0 , i.e. that x does not belong to N+M,,  .

Corollary . M is Hausdorff if and only if n M, = 0.
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3. Completion of filtered modules

If M is a filtered A-module, we write 6f for its Hausdorff completion;
this is an A -module, isomorphic to l@ M/Mn  . If we set

h;r,  = Ker(fi  + M/M,),

&l becomes a filtered A-module, and h;r/i$,,  = M/Mn  ; iI&  is the
completion of M,,  , with the filtration induced by that of M .

Proposition 2. Let M be a filtered module, Hausdorff and complete.
A series C x, , x, E M , converges in M if and only if its general term
x, tends toward zero.

The condition is obviously necessary. Conversely, if x, --)  0, there
exists for every p an integer n(p) such that n 2 n(p) + x, E MP . Then
2, + x,+1 + . . . + z,+k E MP for every k 2 0, and the Cauchy  criterion
applies.

Proposition 3. Let A be a ring and m an ideal of A . If A is
Hausdorff and complete for the m -adic topology, the ring of formal power
series A[[X]] is Hausdorff and complete for the (m, X) -adic topology.

The ideal (m, X)n  consists of the series a0  + arX  + . . . + akXk  + . . .
such that aP  E mn-p  for 0 5 p 5 n . The topology defined by these
ideals in A[[X]] is therefore the topology of pointwise convergence of the
coefficients ai ; i.e., A[[X]] is isomorphic (as a topological group) to the
product AN  , which is indeed Hausdorff and complete.

Proposition 4. Let ml,... , mk  be pairwise  distinct maximal ideals
of the ring A, and let t = ml  n . . c1 mk  . Then there is a canonical
isomorphism

A = n a,,
l<i<k

where A is the completion of A for the r -adic topology, and where &
is the Hausdorff completion of A,,-,*  for the miAmi  -adic topology.

[ There is an analogous result for modules. ]

AS the mi  , 1 I i 5 k , are pairwise  distinct, we have

,4/m  = A/(m;  n . . n rn;)  = n AmilmlAmi.
l<i<k
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[we  are using here a variant of B&out’s  lemma: if al,.  . . , ak  are ideals of
A such  that ai  + aj = A for i #  j , the map A -+ nA/a.  is surjective
with kernel  equal to a1  . . . ak,  cf. e.g. [Bour],  Chap. II, Sl,‘no. 2.1 ’Hence:

Remark.
taking for

The proposition applies to the case of a semi-local ring A
mi

radical of A
the set of maximal ideals of A ; the ideal r is then thi

4. Graded rings and modules

Definition 2.
composition

A graded ring is a ring A given with a direct sum de-

A = @An>
where the A, are additive subgrouG’:f  A such that A, = (0)  if n < 0
and A,A, c A,+, . A graded module over the graded ring A is an
A-module M given with a direct sum decomposition

AJf  = @L
TZEZ

where the M, are additive subgroups of M such that M, = (0)  if n < 0
and ApMq  c Mp+q  .

Now let M be a filtered module over a filtered ring A
gr(M) for the direct sum @g’,(M),  where gr,(M)  = M~/I&~~.~~~~
canonical maps from A, x 111,  to Mp+q define, by passing to quotients
bilinear maps from gr,(A)  x gr,(M)  to gr,+,  (M) , whence a bilinear ma;
from gr(A) x gr(M) to gr(M) .

In particular, for M = A , we obtain a graded ring structure on gr(A)
this is the graded ring associated to the filtered ring A. Similarly ;

the map gr(A) x gr(M) -+ gr(M)
module structure. If u : M

p rovides gr(M) with a gr(A)-graded
--f  N is a morphism of filtered modules, u

defines, by passing to quotients, homomorphisms

e,(u) : Mn/Mn+l  + Nn/Nn+l,
whence a homomorphism gr(u) : gr(M) -+ gr(iV)

Example. Let Ic be a ring, and let A = k[[Xl,  . . ,X7]] be the algebra
of formal power series over Ic in the indeterminates X1, . . . , X, Let
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m=(Xl,...  ,&), and provide A with the m -adic filtration. The graded
ring gr(A) associated to A is the polynomial algebra k[Xl  , . . , X,] ,
graded by total degree.

The modules M , $I and gr(M) have similar properties. First:

Proposition 5. The canonical maps M 4 h;r  and A + A induce
isomorphisms gr(M) = gr(6f)  and gr(A) = gr(a)  .

This is clear.

Proposition 6. Let u : M 4  N be a morphism of filtered modules.
We suppose that M is complete, N is Hausdorff, and gr(u) is surjective.

Then u is a surjective strict morphism, and N is complete.

Let n be an integer, and let y E  N, . We construct a sequence
(zk)kLo  of elements of M,,  such that

Zkfl = Zk m o d  Mn+k a n d  ‘ll(zk) = y  m o d  Nn+k.

We proceed by induction starting with x0 = 0 . If xk has been constructed,
we have u(zk)  - y E  Nn+k and the surjectivity  of gr(u) shows that there
exists tk  E M,+k  such that U(tk) E u(Xk) - y mod Nn+k+i  ; we take
zk+l  = xk - tk . Let x be one of the limits in M of the Cauchy sequence
(xk)  ; as M, is closed, we have z E  M, , and U(X)  = limu(xk)  is equal
to y . Therefore u(M,)  = N,  : which shows that u is a surjective strict

morphism. The topology of N is a quotient of that of M , and it is
therefore a complete module.

Corollary 1. Let A be a complete filtered ring, M a Hausdorff fil-
tered  A -module, (z,)~~I  a finite family of elements of M , and (ni)  a
finite family of integers such that xi E  M,,  . Let z be the image of x,
in gr,,(M)  . If the E generate the gr(A) -module gr(M) , then the xi
generate M , and M is’ complete.

Let E = A’, and let E, be the subgroup of E which consists of

(azha such  tha t  ai  E  A,-,, for each i E  I. This defines a filtration

of E and the associated topology is the product topology of A’  . Let
u : E ‘4 M be the homomorphism given by:

U((G))  = Cw,.

This is a morphism of filtered modules, and the hypothesis made on the
:, amounts to saying that gr(u) is surjective. Hence the result accordmg
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to proposition& [ The proof shows also that M, = CAnmnixi  for each
integer n . ]

Corollary 2. If M is a Hausdorff filtered module over the complete
filtered ring A , and if gr(M) is a finitely generated (resp.  noetherian)
gr(A) -module, then M is finitely generated (resp. noetherian, and each
of its submodules is closed).

Corollary 1 shows that, if gr(M) is finitely generated, then M is
complete and finitely generated. Moreover, if N is a submodule of M ,
with the induced filtration, then gr(N) is a graded gr(A) -submodule of
gr(M)  ; thus if gr(M) is noetherian, gr(N) is finitely generated, and N
is finitely generated and complete (therefore closed since M is Hausdorff);
hence M is noetherian.

Corollary 3. Let m be an ideal of the ring A. Suppose that A/m is
noetherian, m is finitely generated, and A is Hausdorff and complete for
the m -adic topology. Then A is noetherian.

Indeed, if m is generated by 21,.  . . , z,  , then gr(A) is a quotient of
the polynomial algebra (A/m)[Xl,  . . . , Xv]  , and therefore is noetherian.
The corollary above then shows that A is noetherian.

Proposition 7. If the filtered ring A is Hausdorff, and if gr(A) is a
domain, then A is a domain.

Indeed, let x and y be two nonzero  elements of A. We may find n, m
such that x E A,, - A,+1 , y E A, - Am+1  ; the elements x and y then
define nonzero  elements of gr(A) ; since gr(A) is a domain, the product
of these elements is nonzero,  and a fortiori we have xy # 0 , whence the
result.

One can similarly show that if A is Hausdorff, noetherian, if every
principal ideal of A is closed, and if gr(A) is a domain and is integrally
closed, then A is a domain and is integrally closed (cf. for example [ZS],
vol. II, p.250  or [Bour], Chap. V, $1).  In particular, if k is a noetherian
domain, and is integrally closed, the same is true for k[X]  and for k[[X]] .

Note also that, if k is a complete nondiscrete valuation field, the
local ring k((X1,.  . ,Xr)) o convergent series with coefficients in k isf
noetherian and factorial (that may be seen via Weierstrass “preparation
theorem”).
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5. Where everything becomes noetherian again -
q -adic filtrations

From now on, the rings and modules considered are assumed to be noethe-
rian. We consider such a ring A and an ideal q of A ; we provide A with
its q -adic filtration.

Let M be an A-module filtered by (M,) with qMn  c M,+l  for
every n > 0. We associate to it the graded group x which is the
direct sum  of the M, , n 2  0 ; in particular, 2 = @ qn . The canonical
maps A, x Mq  + Mpfp extend to a bilinear map from 2 x % to %?  ;
this defines a graded A -algebra structure on 2,  and a graded 71  -module
structure on %?  [ in algebraic geometry, x corresponds to blowing up at
the subvariety defined by q , cf. e.g. [Eis], 55.2  1.

Since q is finitely generated, 2 is an A -algebra generated by a finite
number of elements, and thus is in particular a noetherian ring.

Proposition 8. The following three properties are equivalent:
(a) We have M,+I  = qMn  for n sufficiently large.
(b) There exists an integer m such that M,,+k  = qkM, for k > 0
(c) M is a finitely generated 71  -module.

The equivalence of (a) and (b) i s t rivial. If (b) holds for an integer m ,
it is clear that z is generated by xi+,,  Mi  , whence it is finitely gener--
ated;  hence (c). Conversely, if a is generated by homogeneous elements of
degree ni  , it is clear that we have M,+l  = qM,,  for n > sup ni ; whence
Cc)  =+ (4 .

Definition The filtration (Mn) of M is called q -good if it satisfies
the equivalent conditions of prop. 8 (i.e., we have M,+l  > qM,  for all n ,
with equality for almost all n ).

Theorem 1 ( Artin-Rees). If P is a submodule of M , the filtration
induced on P by the q -adic filtration of M is q -good. In other words,
there exists an integer m such that

P n qmfk M = qk(Pn  q”M) for all k 2  0 .

We clearly have p c a;  since u is finitely generated, and 71  is
noetherian, P is finitely generated, which proves the theorem.

[ This presentation of the Artin-Rees Lemma is due to Cartier; it is
reproduced in [Bour], Chap. III, $3.  ]
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Corollary 1. Every A -linear map u : M -+ N is a strict homomor-
phism of topological groups (in the sense of Bourbaki, TG III) when M
and N are given the q -adic topology.

It is trivial that the q -adic topology of u(M) is a quotient of that of
M , and theorem 1 implies that it is induced by that of N .

Corotlary  2. The  canonical map a @A  M + h;r  is bijective, and the
ring A is A -Aat.

The first assertion is obvious if M is free. In the general case, choose
an exact sequence:

L1+LO-+M--+O
where the Li  are free. We have a commutative diagram with exact rows:

^ ^
ABALI - A@ALo  - A@AM - 0

4 90 1 4 1* ^
Ll , Lo - Aif - 0.

Since $0 and ~$1 are bijective, so is 4. Further, since the functor M H k
is left exact, so is the functor M H a @A  M (in the category of finitely
generated modules - therefore also in the category of all modules), which
means that a is A-flat.

Corollary 3. If we identify the Hausdorff completion of a submodule
N of M with a submodule of fi , we have the formulae:

ti =  iiN, &+&  =  (Nl+Nz)r;  &n&  =  (NlnN,)7

We leave the proof to the reader; it uses only the noetherian hypothesis
and the fact that a is flat. In particular, corollary 3 remains valid when we
replace the functor M H &l by the “localization” functor M H S-lM ,
where S is a multiplicatively closed subset of A

Corollary 4. The following properties are equivalent:
(i) q is contained in the radical t of A .
(ii) Every finitely generated A -module is Hausdorff for the q -adic topol-

(iii) E””  y b d 1 f fi ‘t  1ver su mo u e o a m e y generated A -module is closed for the
q -adic topology.

(i) + (ii) Let P be the closure of 0 ; the q -adic topology of P
is the coarsest topology, whence P = qP , and since q C t , this implies
P = 0 by Nakayama’s lemma.
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(ii) =+ (iii) . If N is a submodule of M , the fact that M/N is
Hausdorff implies that N is closed.

(iii) + (i) . Let m  be a maximal ideal of A . Since m is closed in
A,wehave qcm,whencealso qtr.

Corollary 5. If A is local, and if q is distinct from A, we have

f--) qn = 0.

n>O

This follows from corollary 4.

Definition . A Zariski ring is a noetherian topological ring whose topol-
ogy can be defined by the powers of an ideal q contained in the radical
of the ring. [ This condition does not determine q in general; but if q’
satisfies it, we have qn  c q’ and (q’)m  c q for some suitable integers n
and m . ]

If A is a Zariski ring, and if M is a finitely generated A-module,
the q -adic topology of M does not depend on the choice of q (assuming,
of course, that the powers of q define the topology of A ); it is called the
canonical topology of M . It is Hausdorff (corollary 4), which allows us
to identify M with a submodule of I?. If N is a submodule of M , we
havetheinclusions Nc&c~  and N~McQ,andalso  N=finM
(since N is closed in M ).
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1. Review on integer-valued polynomials

The binomial polynomials Qk(X)  , k = 0, 1, . . . are:

&o(X) = 1,
&l(X)  = X,

. . .

Q/c(X)  = f =
0

X(X - 1) . . . (X - k + 1)
k! 7

. . . .
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They make up a basis of Q[X] . Moreover, if A denotes the standard
difference operator:

Af(n) = f(n + 1) - f(n),

onehas  &?k=Qk-l  for k>O.

Lemma 1. Let f be an element of Q[X] . The following properties are
equivalent:

a) f is a Z -linear combination of the binomial polynomials Qk .
b) One has f(n) E Z for all n E Z .
c) One has f(n) E Z for all n E Z large enough.
d) Af has property a), and there is at least one integer n such that

f(n) belongs to Z .

The implications a) =S b) + c) and a) + d) are clear. Conversely,
if d) is true, one may write Af as A f = c ek&k  , with ek E Z , hence
f = ~ek&k+l +eo, with ec E Q ; the fact that f takes at least one
integral value on Z shows that es is an integer. Hence d) % a) . To
prove that c) + a) , one uses induction on the degree of f . By applying
the induction assumption to Af , one sees that A f has property a), hence
f has property d), which is equivalent to a), qed.

A polynomial f having properties a), . . . , d) above is called an
integer-valued polynomial.

If f is such a polynomial, we shall write ek(  f) for the coefficient of
Qk in the decomposition of f :

f = c e&k.

One  has ek(f)  = ekml(Af)  if k > 0. In particular, if deg(f)  5 k, ek(f)
is equal to the constant polynomial Akf , and we have

X”
f(x)  = ek(f)-  + S(x),k!

with deg(g) < k.

If deg(f)  = k , one has

f(n) .N  ek(f)$ for n--+  00;

hence:
ek(  f) > 0 M f(n) > 0 for all large enough n .
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2. Polynomial-like functions

Let f be a function with values in Z which is defined, either on Z , or
on the set of all integers 2 no  , where no  is a given integer. We say
that f is polynomial-like if there exists a polynomial Pf  (X) such that
f(n) = Pf(n)  for all large enough n . It is clear that Pf  is uniquely
defined by f , and that it is integer-valued in the sense defined above.

Lemma 2. The following properties are equivalent:
(i) f is polynomial-like;

(ii) Af is polynomial-like;
(iii) there exists r 2 0 such that Arf  (n) = 0 for all large enough n .

It is clear that (i) =S (ii) + (iii) .
Assume (ii) is true, so that Paf  is well-defined. Let R be an integer-

valued polynomial with AR = PAN  (such a polynomial exists since PAN  is
integer-valued). The function g : n I--+ f(n) -R(n) is such that Ag(n) = 0
for all large n ; hence it takes a constant value ec on all large n . One has
f(n) = R(n) + ec for all large n ; this shows that f is polynomial-like.
Hence (ii) * (i) .

The implication (iii) + (i) follows from (ii) + (i) applied T times.

Remark. If f is polynomial-like, with associated polynomial Pf  , we
shall say that f is of degree k if Pf  is of degree k , and we shall write
ek(f)  instead of ek(Pf).

3. The Hilbert polynomial

Recall that a commutative ring A is artinian if it satisfies the following
equivalent conditions:
(i) A has finite length’(as a module over itself);
(ii) A is noetherian, and every prime ideal of A is maximal.

The radical r of such a ring is nilpotent, and A/r is a product of a
finite number of fields.

In what follows we consider a graded ring H = @H,  having the
following properties:

a) Ho  is artinian;
b) the ring H is generated by HO and by a finite number (xl,.  . . ,x,.)

of elements of HI  .
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Thus H is the quotient of the polynomial ring Ho  [Xi,. . . , X,] by a
homogeneous ideal. In particular, H is noetherian.

Let M = @M, be a finitely generated graded H -module. Each M,
is a finitely generated Ho  -module, hence has finite length. We may thus
define a function n H x(M,  n) by:

x(M,  n)  = ~H,(MA

where e denotes the length. We have x(M,n)  = 0 when n is small
enough. The behavior of x(M,  n) for n ---f +oo is given by:

Theorem 2 (Hilbert). x(M,  n) is a polynomial-like function of n , of
degree 5 r - 1 .

We may assume that H = Ho[Xl,  . . . , X,] .
We use induction on r . If r = 0, M is a finitely generated module

over Ho  and is therefore of finite length. Hence M,,  = 0 for n large.
Assume now that r > 0, and that the theorem has been proved for r - 1.
Let N and R be the kernel and cokernel of the endomorphism d of M
defined by X, . These are graded modules, and we have exact sequences:

O+N,+M,%MM,+1 -+ R,+l  -+ 0.

Hence:

AX(M,n)  = x(M,n+  1) -x(M,n)  = x(R,n+l)  -x(N,n).
Since X,.  R = 0 and X,N = 0 , R and N may be viewed as graded

modules over Ho[Xl,  . . . , X,-r]  By the induction assumption, x(R,n)
and X(N,  n) are polynomial-like functions of degree 5 r - 2 . Hence
AX( M, n) has the same property; by lemma 2, X( M, n) is polynomial-like
ofdegree  <r-1,qed.

Notation. The polynomial associated to n H x(M,n)  is denoted by
Q(M) , and called the Hilbert polynomial of M . Its value at an integer
n is written Q(M, n) . One has Q(M) = 0 if and only if C(M) < co.

Assume r 1 1. Since degQ(M) 5 r - 1, the polynomial AT-‘Q(M)
is a constant, equal to e,-l(Q(M)) with the notation of $1.  One has
A’-lQ(  M) 2 0 since Q( M, n) > 0 for n large. Here is an upper bound
for A’-lQ(M):

Theorem 2’. Assume that MO  generates M as an H-module. Then:
a )  ArelQ(M)  5 [(MO).
b) The following properties are equivalent:

bl)  A’--‘&(M) = e(Mc,);
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b2) x(M,  n) = [(MO)  (“FL;‘)  for aJJ  n 2 0 ;
b3) the natural map M@H~ Ho[Xl,  . . . , X,] + M is an isomorphism.

Here again we may assume that H = Ho[Xl,  . . . , XT]  . Put:

ti  = Mo@~O  H = Mo[Xl,...  ,X,.].

The natural map M --f M is surjective  by assumption. If R is its kernel,
we have exact sequences

O+R,+I&+M,+O (n 2 0).

Hence

ep,)  +e(h)  =  e(iL)  =  e(Mo)
(

n TT;  ’

By comparing highest coefficients, we get

(*) Ar-lQ(M)  = !(Mo) - A’-IQ(R).

This shows that a) is true. It is clear that b2) * b3) + bl) . It remains to
see that bl) + b3) . Formula (*)  ba ove shows that it is enough to prove:

(**) If R is a nonzero  graded submodule of fi = Mo[Xl,  . . . , X,.]  , then
A’-lQ(R)  2 1.

To do that, let

O=M”cM’c...cMS=Mo

be a Jordan-Holder series of MO  ; put Ri  = Rn I&  = Rn Mi[X1,.  . . , X,.]
for i = 0,. . . , s . Since R # 0 , one can choose i such that Ri  # Ri-’  .
We have

Q(R,n) 2 Q(Ri/Ri-‘,  n) for n large enough.

Moreover, Ri/Ri-’  is a nonzero  graded submodule of Mi/Miel  @Ho  H .
The HO -simple module M”/M”-’  is a l-dimensional vector space over a
quotient field k of HO : Hence Ri/Ri-’  may be identified with a graded
ideal a of the polynomial algebra k[Xl,  . . . , X,] . If f is a nonzero  homo-
geneous element of a, then a contains the principal ideal f.k[Xl, . . , X,] ,
and for large enough n , we have

Q(Ri/Ri-‘,n  + t) = e(a,+t ) 2 (
n+r-1

r _  1 ) where  t = d&f)

Hence ArMIQ(Ri/Ri-l)  2 1, and a fortiori  A’-lQ(R)  > 1, qed.
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4. The Sammuel polynomial

Let A be a noetherian commutative ring, and let M be a finitely generated
A -module, and q an ideal of A. We make the following assumption:

(4.1) !(M/qM) < 00.

This is equivalent to:

(4.2) All  the elements of Supp(M)  n V(q) are maximal ideals.

(The most important case for what follows is the case where A is local,
with maximal ideal m , and q is such that m > q > mS for some s > 0 .)

Let (Mi) be a q-good filtration of M (cf. part A, 55).  We have
M=M,,  > Ml > . .  .  .

M 3 qMi-1, with equality for large i.

Since V(qn) = V(q) for all n > 0, the A -modules M/qnM have finite
length, and the same is true for M/Mn  since M, > q*M . Hence the
function

h : n H !(M/Md
is well-defined.

Theorem 3 (Samuel). The function

f~ : n H !(M/MJ
is polynomial-like.

To prove this we may assume that Ann(M) = 0 (if not, replace A
by A/ Ann(M)  , and replace q by its image in A/ Ann(M) ). Then (4.2)
shows that the elements of V(q) are maximal ideals, i.e. that A/q is
artinian. Let

H = gr(A) = @ q”/qn+’

be the graded ring of A relative to its q -adic filtration. The direct sum

.dW = @ MnlMn+l

is a graded H-module. If Mn+l  = qMn  for n L no  , gr(M) is generated
by

MO/MI  @.  . . @ Mno  lMno+~;
hence it is finitely generated. By theorem 2, applied to H and to gr(M)  ,
the function n H x(gr(M),n)  = l?(Mn/Mn+l)  is polynomial-like. More-
over, we have AfM(n)  = !(M/Mn+l)  -!(M/Mn)  = e(Mn/Mn+l) This
shows that Afi~  is polynomial-like; by lemma 2, the same is true for fu ,
qed.

Remark. The integer-valued polynomial PjM associated to f~ will
be denoted by P((Mi))  , and its value at an integer n will be written
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P((M),  n) . The proof above shows that:

(4.3) WtMd) = QtdWL
where  Q(dM)) is the Hilbert polynomial of the graded module gr(M) .

When (Mi) is the q -adic filtration of M (i.e. Mi  = qiM for all
i > 0), we write P4(M) instead of P((qiM))  . As a matter of fact, there
is not much difference between the general case and the q -adic one, as the
following lemma shows:

Lemma 3. We have

PqW)  = P((M))  + R,
where R is a polynomial of degree 5 deg( P4  (M)) - 1 , whose leading term
is LO.

Indeed, let m 2 0 be such that M,+l  = qM,,  for n 2 m. We have

qn+mM c  Mn+m  =  q”Mn  c  q”M  c  M, tn 2 O),
hence:

P4(M,n+m)  2 P((Mi),n+m)  L P,(M,n)  > P((M,),n)  for n large.

This shows that P,(M,  n) - P((Mi),  n) is 2 0 for n large, and that
Pq(M) and P((M,))  h ave the same leading term. Hence the lemma.

F’rom  now on, we shall be interested mostly in P4(M) and its leading
term.

Proposition 9. Let a = Ann(M) , B = A/a, and denote the B-ideal
(a + q)/a  by p . Assume that p is generated by F elements 51, . . , x, .
Then:

a) degP,(M)  5 r.
b) ATP,(M)  5 C(M/qM).
c)  We have A”P,(M)  = C(M/qM)  if and only if the natural map

4 ‘:  (M/Of)  [Xl,.  . , -&I  - gr(M)
is an isomorphism.

(The map 4 is defined via the homomorphism

(BIPWl,.  . . , XT1 - gr(B)

given by the zi .)

We may assume a = 0 , hence B = A , p = q , and gr(A) is a
quotient of the polynomial ring (A/q)[Xl,  . . . , X,] . The case T = o is
trivial. Assume T 2 1 . By (4.3), we have

(4.4) A’P,(M)  = A’-‘Q(gr(M)).
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By theorem 2, Q(gr(M)) has degree 5 T - 1 . Hence P4(M) has degree
5 T , and a) is true. Assertions b) and c) follow from (4.4) and theorem 2’.

The function M H Pq(M) is “almost” additive. More precisely, con-
sider an exact sequence

O--+N+M+P-+O.

Since M/qM has finite length, the same is true for N/qN  and P/qP;
hence the polynomials P4  (N) and P9(P)  are well-defined.

Proposition 10. We have

P,(M) = Pq  (N)  + Pq  (PI  - R

where R is a polynomial of degree 2 deg P4  (N) - 1 , whose leading term
is 20.

Indeed, put Ni  = qiM n N. By theorkm 1 (Artin-Rees), (N,)  is a
q -good filtration of N , and we have

t(M/qnM)  = C(N/N,) + d(P/qnP) for n 2 0,

hence
P&W  = PC(N))  + Pq(P).

By lemma 3, applied to N , we have

P((Ni))  = P,(N)  + R,

with deg R 2 deg P,(N) - 1, and R(n) 2 0 for n large. The proposition
follows.

Notation. If d is an integer 2 deg P4  (M) , we denote by eg (M, d) the
integer AdPq  (M) . Hence:

e,(M,d)  = 0 if d > degP,(M),

q(M,d)  2 1 if d = deg P4(M).

Moreover, if d = deg Pq  (M) , we have

(4.5) p9 CM7 4 N q(M,d)$ for n --+  +oo  .

The following additivity property of eq  (M, d) is a consequence of
prop. 10:
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Corollary . With the notation of prop. 10, one has:

e,(M,d)  = e,(N,d)  +e,(P,d) for d > deg P,(M) .

(This will be useful later to define intersection multiplicities, cf. Chap. V,
part A.)

Here are a few more elementary properties of P4  (M) :

Proposition 11. The degree of P,,  (M) depends only on M and on
Supp(M)  n l*‘(q).

We may assume that Ann(M) = 0, and thus I/‘(q) = {ml,.  . . ,m,}  ,
where the mi  are maximal ideals of A. Let q’ be such that I/‘(q’)  = v(q)  .
We have to show that deg P,(M) = deg P4j  (M) . Choose an integer m > 0
such that qm c q’ , cf. Chap. I, car.  to prop. 2. We have qm”  c q’n for
n 2 0 , hence

Pq(M,mn)  L Pgr(M,  n) for n large.

This implies deg P4  (M) > deg P4/  (M) . By exchanging the roles of q and
q’ , we get the reverse inequality, hence deg P4  (M) = deg P4, (M) .

Remark. A somewhat similar argument shows that

degPq(M)  =  degP,(M’)  i f  Supp(M)  =  Supp(M’).

Hence deg Pq  (M) depends only on Supp(  M) fl V(q) .

Proposition 12. Suppose that V(q) = {ml,.  . . , m,} , where the mi
are maximal ideals. Put Ai = Ami  , Mi  = Mmi  and qi  = qAi  . Then:

s
PqP)  = c P&M,).

i=l

(Hence the study of Pg  (M) can be reduced to the case when A is local,
and q is primary with respect to the maximal ideal of A .)

The proposition follows from the BGzout-type  isomorphism

which shows that M/qnM is isomorphic to n Mi/qaM .



Chapter III. Dimension Theory

(For more details, see [Bour], Chap. VIII.)

A: Dimension of Integral Extensions

1. Definitions

Let A be a ring (commutative, with a unit element). A finite increasing
sequence

PO c PI  c . . . c PT (1)
of prime ideals of A, such that pi  # pi+1  for 0 < i 5  T - 1 , is called a
chain of prime ideals in A. The integer r is called the length of the
chain; the ideal pc  (resp. pp ) is called its origin (resp. its extremity);
one sometimes says that the chain (1) joins po to pr  .

The chains with origin pc  correspond bijectively to the chains of the
ring A/p0 with origin (0) ; similarly, those with extremity p,. correspond
to those of the local ring A,,,. with extremity the maximal ideal of that
ring. One can therefore reduce most questions concerning chains to the
special case of local domains.

The dimension of A, which is written as  dim A or dim(A) , is de-
fined as the supremum‘ (finite or infinite) of the length of the chains of
prime ideals in A . An artinian ring is of dimension zero; the ring Z is of
dimension 1 . If k is a field, we shall prove later (proposition 13) that the
polynomial ring k[Xr,  . . . , Xn]  is of dimension n ; it is clear anyway that
its dimension is 2  n , since it contains the chain of length n :

0 c (Xl)  c (X1,X2)  c . . c (Xl,. . . ,X,).

If p  is a prime ideal of A, the height of p  is defined as the dimension
of the local ring A, ; this is the supremum of the length of the chains of
prime ideals of A with extremity n  . If a is an ideal of A, the height of
a is defined as the infimum of the heights of the prime ideals containing
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a. If we write ua)  for the set of these ideals (cf. Chap. I), then:

(2)

[When V(a) = 0, i.e. a = A, this definition should be interpreted as:
ht(a) = dim A .]

If p is a prime ideal, we obviously have:

ht(p)  + dim A/p 5 dim A, (3)
but equality does not necessarily hold, even when A is a local noetherian
domain (cf. (NagSI,  p. 203, Example 2).

Proposition 1. If a c a’, we have ht(a) 5 ht(a’) .

This is clear.

2. Cohen-Seidenberg first theorem

Let B be a commutative A-algebra. Recall that an element 2 of B is
integral over A if it satisfies an ‘(equation of integral dependence”:

x”+a1x n-1 + . . . + a ,  =  0 , with ai E A, (4)
for a suitable n 2 1 . This is equivalent to saying that the subalgebra A[z]
of B generated by x is a finitely generated A-module.

In what follows, we assume that B contains A, and that every ele-
ment of B is integral over A (in which case one says that B is integral
over A).

Lemma 1. Suppose B is a domain. Then

A is a field _  B is a field.

Suppose A is a field, and let x be a nonzero  element of B . Choose an
equation (4) of minimal degree. We have a, # 0 because of the minimality
property. Then x has an inverse in B , namely:

-,,yxn-l +  qxn-2  + . . + c&-l).

This shows that B is a field.
Conversely, suppose that B is a field, and let a be a nonzero  element

of A. Let x be its inverse in B , and choose an equation (4) satisfied by
x . Dividing by xn-’ , we get:

x  =  -(al+a2a+...+a,a~-1),

which shows that x belongs to A ; hence A is a field.
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Now let p and p’ be prime ideals of A and B respectively. One says
that p’ lies over p  if p’ n A = p .

Proposition 2.
(a) For each prime ideal p of A , there exists a prime ideal p’ of B which

lies over p .
(b) If p’ c p” are two prime ideals of B lying over the same prime ideal

p of A , we have p’ = p” .
(c) If p’ lies over p , for p to be maximal, it is necessary and sufficient

that p’ is maximal.

Assertion (c) follows from lemma 1, applied to A/p c B/p’ . Asser-
tion (b) follows from (c) applied to A,, c B, (we write B, for the ring of
fractions of B relative to the multiplicative set A - p ). The same argu-
ment shows that it suffices to prove (a) when A is local and p maximal;
in this case, take any maximal ideal of B for p’ , and apply lemma 1.

Corollary .
(i) If&  C . . . c pi is a chain ofprime ideals of B , then the pz = p:nA

form a chain of prime ideals of A .
(ii) Conversely, let po C . . . c pr be a chain of prime ideals of A, and

let pb be lying over po . Then there exists a chain pb C . . . C pi
in B , with origin pb , which lies over the given chain (i.e. we have
pi nA = pi for all i).

Part (i) follows from (b) of proposition 2. For (ii), we argue by induc-
tion on r , the case r = 0 being trivial. If pe c . . . c pr-1 is lifted to
nb c . . . c pk-i , proposition 2 applied to A/p,-, c B/p:-, , shows that
there exists pk containing pb-r and lying over pr .

Proposition 3. We have dim A = dim B . If a’ is an ideal of B , and
if a = a’ n A, we have

ht(a’) 5 ht(a).

The equality dim A = dim B follows from the above corollary. As for
the inequality about the heights, it is clear when a’ is a prime ideal, and
the general case  reduces to that.
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3. Cohen-Seidenberg second theorem

Recall that a domain A is integrally closed if every element of its field
of fractions which is integral over A belongs to A.

Proposition 4. Let A be an integrally closed domain, let K be its field
of fractions, let L be a quasi-Galois extension of K (Bourbaki, Algbbre  V
§9),  let B be the integral closure of A in L , let G be the group of
automorphisms of L over K , and let p be a prime ideal of A. Then G
acts transitively on the set of prime ideals of B lying over p .

(Recall that the integral closure of A in L is the subring  of L
made up of the elements which are integral over A .)

First suppose that G is finite, and let q and q’ be two prime ideals
of B lying over p . Then the gq (where g belongs to G ) lie over p ,
and it suffices to show that q’ is contained in one of them (proposition 2),
or equivalently, in their union (cf. Chap. I, lemma 1). Thus let x E q’ .
The element y = rig(z) is fixed by G ; since L/K is quasi-Galois, this
shows that there exists a power q of the characteristic exponent of K
with y*  E K . We have yQ  E K n B = A (since A is integrally closed).
Moreover, yq  E q’ n A = p , which shows that yq  is contained in q
Therefore there exists g E G such that g(x) E q , whence x E g-lq , qed.

The general case: Let q and q’ lie over p For every subfield M
of L , containing K , quasi-Galois and finite over K , let G(M) be the
subset of G which consists of g E G which transform q n M into q’ n M .
This is clearly a compact subset of G , and is non-empty according to what
has been shown. As the G(M) form a decreasing filtered family, their
intersection is non-empty, qed.

Proposition 5. Let A be an integrally closed domain. Let B be a
domain containing A, and integral over A. Let po c . c pT be
a chain of prime ideals of A , and let pk lie over p,.  . Then there exists
a chain p&  c . . . c pk of B , lying over the given chain, and with
extremity p: .

(In fact, the proposition is true with the hypothesis “B is a domain”
replaced by the following: “the nonzero  elements of A are non-zero-divisors
in B”).

The field of fractions of B is algebraic over the field of fractions K
of A. Embed it in a quasi-Galois extension L of K , and let C be the
integral closure of A in L . Let qc  be a prime ideal of C lying over
PI > and let qo  c . . . c q,. be a chain of prime ideals of C lying over
po c . . . c PI-. If G denotes the group of K -automorphisms of L ,
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proposition 4 shows that there exists g E G such that gq,.  = qk ; thus if
we set q: = gqi  , and pi  = B n qk , it is clear that the chain & C . . C pk
satisfies our requirements.

Corollary . Let A and B be two rings satisfying the hypotheses of
the proposition above; let b be an ideal of B , and let a = b n A. We
have

ht(a) = ht(b).

When b is a prime ideal, this follows from the proposition. In the
general case, let p’ be a prime containing b , and let p = p'nA . According
to the above, we have ht(p’)  = ht(p)  2 ht(a) . As ht(b) = inf ht(p’)  , we
have ht(b) 2 ht(a) , and together with prop. 3, we obtain the equality we
want.

B: Dimension in Noetherian Rings

1. Dimension of a module

Let M be an A -module, and let A,-,J  = A/ Ann(M) be the ring of scalar
multiplications of M The dimension of M , denoted by dim M , is
defined as the dimension of the ring AM  . When M is finitely generated,
the prime ideals p of A containing Ann(M) are those which belong to the
suppoti  Supp(M)  of M (cf. Chap. I, 85).  Hence dim M is the supremum
of the lengths of chains of prime ideals in Supp(M)  [ which we also write
as dim M = dim Supp(M)  1;  that is to say,

dim M = sup dim A/p for p E Supp(M)  .

In this formula, we can clearly limit ourselves to the minimal prime ideals
of Supp(M).

2. The case of noetherian local rings

From now on, we suppose that A is local noetherian; we write m(A) , or
just m, for its radical. An ideal q of A is called an ideal of definition
of A if it is contained in m , and if it contains a power of m (which is
equivalent to saying that A/q is of finite length).

Let M be a nonzero  finitely generated A -module. If q is an ideal of
definition of A, M/qM  is of finite length, which allows us to define the
Samuel polynomial P4  (M, n) of M , cf. Chap. II, part B. The degree of
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this polynomial is independent of the choice of q (Chap. II, proposition 11);
we denote it by d(M) .

Finally, we write s(M) for the infimum of the integers n such that
there exist ~1,.  . . ,x,  E m with M/(x1,.  . , zn)M  of finite length.

Theorem 1. We have

dimM = d(M) = s(M).

First a lemma:

Lemma 2. Let x E m,  and let zM be the submodule of M which
consists of the elements annihilated by x .

a) We have s(M) 5 s(M/xM) + 1.
b) Let pi  be the prime ideals of Supp(M)  such that dim A/pi  = dim M .

If x$pi  forall  i,  wehave  dimM/xM  5 dimM-1.
c)  If q is an ideal of definition of A , the polynomial

CdzW  - WWM)

is of degree 2 d(M) - 1 .

Assertions a) and b) are trivial. Assertion c) follows from the exact
sequences

O+.M+M+  xM -+O
0 -+ xM -+ M -+ M/xM -+ 0

to which we apply prop. 10 of Chap. II.

We can now prove theorem 1 by arguing “in  circle” :

i )  dimM 5 d(M) .
We use induction on d(M) , starting from the case d(M) = 0 which

is trivial. Thus suppose d(M) 2 1, and let po E Supp(M)  such that
dim A/p0  = dim M ; we can suppose po is minimal in Supp(M)  , and M
contains a submodule N isomorphic to A/p0  ; since d(M) 2 d(N) , we
are reduced to proving our assertion for N .

Thus let po c p1 c . . . c pn be a chain of prime ideals in A with
origin po . We have to show that n < d(N) . This is clear if n = 0. If not,
we can choose x E p1 n m , with x $ po . Since the chain p1 c . . . c pn
belongs to Supp(N/xN)  , lemma 2 shows that dim N/xN  = dim N - 1,
and that d(N/xN)  5 d(N) - 1, whence our assertion follows in virtue of
the induction hypothesis applied to N/xN  .

ii) d(M) 5 s(M).
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Let a= (xl,... ,x,)  , with a c m , and M/aM of finite length. The
ideal q = a + Ann(M) is then an ideal of definition of A, and therefore
P,(M) = Pq(M). According  to prop. 9 of Chap. II, the degree of P,(M)
is I n,  whence d(M) 2 s(M).

iii) s ( M )  < dimM.
We use induction on n = dim M [ which is finite, according to i) 1.

Suppose n > 1, and let pi  be the prime ideals of Supp(M)  such that
dim A/pi  = n ; the ideals are minimal in Supp(M)  , whence there are
only finitely many of them. They are not maximal when n 2 1 . Thus
there exists x E m , such that x $ pi  for all i . Lemma 2 shows that
s(M) 5 s(M/xM)  + 1, and dimM L dim M/xM + 1. By the induction
hypothesis, we have s(M/xM)  5 dim M/xM , whence the result we want,
qed.

The theorem above (due to Krull [Kr2]  and Samuel [Sa3])  is the main
result of dimension theory. It implies:

Corollary 1. We have dim h;r  = dim M .

It is indeed clear that d(M) is not changed by completion.

Corollary 2. The dimension of A is finite; it is equal to the minimal
number of elements of m that generate an ideal of definition.

This is the equality dim M = s(M) for M = A.

Corollary 3. The prime ideals of a noetherian ring satisfy the descend-
ing chain condition.

By localizing, we are reduced to the local case, where our assertion
follows from corollary 2.

Corollary 4. Let A be a noetherian ring, let p be a prime ideal of A,
and let n be an integer. The two conditions below are equivalent:

ht(p) 5 n.
There exists an ideal a of A, generated by n elements, such that p
is a minimal element of U(a) .

If (ii) holds, the ideal aA, is an ideal of definition of A,, , whence
Conversely, if (i) holds, there exists an ideal of definition b of A,,
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generated by n elements xi/s, s E A - p . The ideal a generated by the
xi  then satisfies (ii). [ For n = 1 , this is Krull’s “Hauptidealsatz”.  ]

Corollary 5. Let A be a noetherian local  ring, and Jet M be a finitely
generated A -module. Let pi  be the prime ideals in Supp(M) such that
Ajp,=dimM.  1f  xEm(A), we have dim(M/xM)  2.  dim M - 1 and
equality holds if and only if x does not belong to any of the pi  .

This follows from lemma 2, combined with the equalities

dim M = s(M) a n d  dim(M/xM)  =  s(M/xM).

3. Systems of parameters

Let A be as above, and let M be a finitely generated nonzero  A -module of
dimension n . A family (x1,  . . . ,x,) of elements of m is called a system
of parameters for M if M/(x1,. . , x,)M is of finite length, and if
s = n . According to theorem 1, such systems always exist.

Proposition 6. Let xl,. . . , xk  be elements of m . Then:

dim M/(x:1,.  . ,xk)M+k  > dimM.

There is equality if and only if x1,  . , xk  form part of a system of param-
eters of M .

The inequality follows from lemma 2, applied k times. If equal-
ity holds, and if Xk+l,  . . ,x, ( n = dim M) is a system of param-
eters of M/(x1,. .  , xk)M  , the quotient M/(x1,. ,xn)M  is of finite
length, which shows that xl,.  . , xn is a system of parameters of M .
Conversely, if x1,  . . . , 2, is a system of parameters of M , we have
n - k  2  dimM/(xl,. . ,xk)M  , qed.

Proposition 7.
equivalent:

Let x1,  . . , xk  E m . The following conditions are

(a) The xi  form a system of parameters for M
(b) The xi  form a system of parameters for fi
(c) The xi  form a system of parameters for AM  = A/ Ann(M)

This is obvious.

C: Normal Rings

1. Characterization of normal rings
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A ring A is called normal if it is a noetherian domain, and is integrally
closed. For example, any principal ideal domain is normal; if K is a field,
the ring of formal power series K[[Xl,  . . . , Xn]]  and the ring of polynomials
K[Xl,.  . . , Xn]  are normal rings.

Recall that A is a discrete valuation ring if it is a principal ideal
domain and has one and only one irreducible element,, up to multiplication
by an invertible element; it is a normal local ring.

Proposition 8. Let A be a local  noetherian domain, with maximal
ideal m . The following conditions are equivalent:

(i) A is a discrete valuation ring.
(ii) A is normal and of dimension 1 .
(iii) A is normal, and there exists an element a # 0 of m such that

m E Ass(A/aA)  .
(iv) The ideal  m is principal and nonzero.

(i) * (ii) is trivial.
(ii) + (iii) because if a is a nonzero  element of m, the ideal m is the

only prime ideal of A containing aA,  and aA is therefore m-primary.
(iii) + (iv) . Since m belongs to Ass(A/aA)  , there exists x E A, x +! aA,

such that mx c aA.  Thus mxa-l c A and xa-’ $ A. If the ideal mxu-1
is contained in m , then since m is finitely generated, we conclude that
x0-l is integral over A, which is contrary to the hypothesis of normality.
Thus there exists t E m such that u = txa-’ is an invertible element of
A. If y is an element of m , we have y = (yxaml)u-lt,  which shows that
m = tA  , whence (iv).
(iv) + (i) . If m = tA , we have mn = PA,  and since nmn  = 0, for any

nonzero  element y of A there exists n such that y E mn and y $ mn+l
Thus y = tnu  , with u invertible in A , whence yA  = PA ; since any ideal
of A is a sum of principal ideals, we conclude that any ideal of A is of
the form PA, whence (i).

Proposition 9 (Krull). Let A be a noetherian domain. For A to
be normal, it is necessary and sufficient that it satisfies the two  conditions
below:
(a) If p  is a prime ideal of height 1 of A , the local  ring A, is a discrete

valuation ring.
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(b) For every &E A, a # 0, and every p E Ass(A/aA)  , the height of p
is equal to 1 .

If A is normal, the same is true for A, ; if p is of height 1 , we have
dim(Ap) = 1 , and proposition 8 shows that A, is a discrete valuation
ring. Moreover, if a # 0, and if p E Ass(A/aA)  , proposition 8, applied
to A,, shows that A, is a discrete valuation ring, and it is in particular
a ring of dimension 1, whence ht(p)  = 1 .

Conversely, suppose (a) and (b) hold, and let K be the field of frac-
tions of A. Let x = b/a be an element of K ; suppose that x belongs to
each of the A, , for ht(p)  = 1 ; thus we have b E aA,  for ht(p)  = 1, and
according to (b) this implies b E aA,  for every p E Supp(A/aA)  , hence
b E aA.  This shows that A = n A, where p runs through the prime
ideals of A of height 1. Since the A,, are normal, so is A, qed.

Remark. The proof shows that condition (b) is equivalent to the formula
A = n A, where p runs through the prime ideals of A of height 1.

Corollary If A is normal, and if p is a prime ideal of height 1 of
A , the only primary ideals for p are the “(symbolic powers” pen)  , defined
by the formula pen)  = p”A, n A, (n  2 1).

Indeed, the p -primary ideals of A correspond bijectively to the PA,  -
primary ideals of A,, , which are obviously of the form p”A, , n > 1 , since
A, is a discrete valuation ring.

2. Properties of normal rings

For a systematic exposition (in the slightly more general framework of
“Krull rings”), we refer to [Krl 1,  or to [Bour 1,  Chap. VII. We summarize
the main results.

Let A be a normal ring, and let K be its field of fractions. If p is a
prime ideal of A of height 1 , the normalized discrete valuation associated
to the ring A, is written as wP  ; the elements x E A such that up(x)  1 n
form the ideal pen)  If x # 0, the ideal Ax is only contained in a finite
number of prime ideals of height 1; thus z+(x) = 0 for almost all p ,
and this relation extends to the elements x of K’  . The valuations wP
furthermore satisfy the approximation theorem below:

Proposition 10. Let pi , 1 5 i 5  k , be pairwise  distinct prime ideals
of height 1 of A, and let ni E Z , 1 5 i 5  k . Then there exists x E K’
such that:

wpi(x)  = ni (l<i<l;) a n d  q,(x) 2 0  f o r  p # PI,...  ,pk.

First suppose each ni 2 0, and let S = n(A - pi) . Let B = As .
It is clear that the ring B is a semilocal ring, whose maximal ideals are
the pzB  , and the corresponding localizations are the APz  Since these
localizations are principal domains, it follows that B is also a principal
domain; if x/s with s E S is a generator of the ideal p:’  ’ . . pi” B , we see
that x satisfies our requirements.

In the general case, we first choose y E K* such that the integers
mi  = wp, (y) are 5 ni . Let 91,. . . , qr  be the prime ideals of height 1 of
A, other than the pi  , such that wqj(y)  are < 0, and set sj = -wsj(y)  .
According to the previous part of the proof, there exists z E A such that
wPi(z)  = ni - rni  and wqj(z)  = sj . The element x = yz  then satisfies our
requirements, qed.

An ideal a of A is called divisorial if its essential prime ideals are
all of height 1 ; by the corollary to prop. 9, it amounts to the same as
saying that a is of the form npinZ)  , with n, 2 0 and ht(pi) = 1 ; thus
we have x E a if and only if x E A and wP,  (x) 2 ni for all i . We extend
this definition to the nonzero  fractional ideals of K with respect to A.
The divisorial ideals correspond bijectively to the divisors of A, i.e. to
the elements of the free abelian  group generated by the prime ideals of
height 1 . Every principal ideal is divisorial, and the corresponding divisor
is called principal.

A ring is called a Dedekind ring if it is normal of dimension 5 1 .
Its prime ideals of height 1 are then maximal; for such a prime p , we have
pw = p” . Every nonzero  ideal is divisorial.

A noetherian ring A is called factorial if it is normal and its divisorial
ideals are principal (moreover it suffices that the prime ideals of height 1
are so); it amounts to the same as saying that any two elements of A have a
greatest common divisor. Every nonzero  element of A can be decomposed
in the standard way:

x = UK;21  ..qp,

where u is invertible and the pi are irreducible elements; this decompo-
sition  is essentially unique.
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3. Integral closure

Proposition 11. Let A be a normal ring, with field of fractions K ,
and let L be a finite separable extension of K . The integral closure B
of A in L is a normal ring, which is a finitely generated A -module.

Let Tr(y)  be the trace in the extension L/K of an element y of L .
One has Tr(y)  E A if y E B since A is normal; moreover, since L/K is
separable, the K-bilinear form ‘I’r(zy)  is non-degenerate. Let B* be the
set of y E L such that Tr(zy) E A for all z E B ; since B contains a free
submodule E of rank [L : K] , B* is contained in E* which is free, and
since B c B* , B is a finitely generated A-module; in particular, B is a
noetherian ring, whence a normal ring, qed.

Remarks.
1) The set B* is a fractional ideal of L with respect to B , which

is called the codifferent of B with respect to A. It is easy to see that
it is a divisorial  ideal of L , and thus it can be determined by localizing at
the prime ideals of height 1. We are thus reduced to the case of discrete
valuation rings, where one can moreover define discriminant, ramification
groups, etc., see e.g. [Se3].

2) When the extension L/K is no longer assumed to be separable,
it may happen that the ring B is not noetherian (and a fortiori not a
finitely generated A -module); one can find an example in [Nag1  1.

D: Polynomial Rings

1. Dimension of the ring AIX1,.  . . , X,]

Lemma 3. Let A be a ring, let B = A[X] , let p’ c p” be two distinct
prime ideals of B , such that p’ n A and p” n A are equal to the same
prime ideal p of A . Then p’ = pB .

Dividing by pB , we are reduced to the case where p = 0. After
localizing with respect to S = A - (0)) we are reduced to the case where
A is a field, and the lemma is then obvious, since A[X] is a principal ideal
domain.
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Proposition 12. If B=A[X], wehave

dim(A) + 1 5 dim(B) 5 2dim(A) + 1 .

If po C . . . C p,.  is a chain of prime ideals of A, we set pi  = pzB ,
P:+l = p,B + XB , and we obtain a chain of prime ideals of B of length
T + 1. Whence dim(B) 2 dim(A) + 1.

Now if & C . . . c e’,  is a chain of prime ideals of B , and if we set
pi  = pinA, the above lemma shows that we cannot have pi  = pi+1  = pi+2.
We can therefore extract, from the sequence of pi, an increasing chain
comprising at least (s + I)/2  elements, which is to say its length is at least
(s - 1)/2 ; whence (s - 1)/2 5 dim(A) , i.e. s 5 2 dim(A) + 1, which shows
that dim(B) < 2 dim(A) + 1.

Remark. There are examples showing that dim(B) can effectively take
any intermediate value between dim(A) + 1 and 2dim(A)  + 1; see [J].
Nevertheless, in the noetherian case, we will show that

cf. prop. 13.

dim(B) = dim(A) + 1,

In the two lemmas below, we set B = A[X] .

Lemma 4. Let a be an ideal of A, and let p be a prime ideal of A
minimal in V(a) . Then p B is a prime ideal in B minimal in V( aB) .

We can clearly suppose a = 0. If pB is not minimal, it strictly
contains a prime ideal q . Since pBnA  = p is minimal in A , we necessarily
have q 17  A = p , and we obtain a contradiction with lemma 3.

Lemma 5. Suppose A. is noetherian. If p is a prime ideal of A , we
have ht(p)  = ht(pB) .

Let n = ht(p) . According to car.  4 to th. 1, there exists an ideal a of
A, generated by n elements, such that p is a minimal element of V(a) .
According to the previous lemma, pB is a minimal element of V(aB)  , and
car.  4 to th. 1 shows that ht(pB) 5 n . The opposite inequality follows
from the fact that any chain {pi}  of prime ideals with extremity p defines
in B a chain {piB} of the same length and with extremity pB .
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Proposition l3. If A is noetherian, we have

dim(A[Xl,  . . . , Xn]) = dim(A) + n.

It obviously suffices to prove the result for A[X] . We already know
that dim(A[X]) L dim(A) + 1, and it amounts to prove the reverse in-
equality. Thus let & C . . . C pi be a chain of prime ideals of B = A[X] ,
and let pi  = pin A. If the pi  are distinct, we have T < dim(A) . If not, let
j be the largest integer such that pj = pj+l . According to lemma 3,  we
have pi = pjB , whence (lemma 4) ht(p>)  = ht(pj) , and since ht(&) 2 j ,
we have ht(pj) > j . But pj C pj+2  c . . . c p,.  is a chain of prime ideals
in A. Thus T - (j + 1) + ht(pj) 5 dim(A), whence T - 1 5 dim(A) , qed.

2. The normalization lemma

In what follows, k denotes a field. A k-algebra A is called finitely gen-
erated if it is generated (as a k-algebra) by a finite number of elements;
i.e. if there exists an integer n 2 0 and a surjective  homomorphism

k[X1,...  ,Xn]  +A .

Theorem 2 (Normalization lemma). Let A be a finitely generated
k-algebra, and let al c . . . c ap  be an increasing sequence of ideals
of A, with ap  # A. Then there exist an integer n 2 0 and elements
Xl,...  7% of A, algebraically independent over k , such that

a) A is integral over B = k[xl, . . . , x,] ;
b) for each i , 1 2 i 5 p, there exists an integer h(i) > 0 such that

ai  n B is generated by (xl,.  . . , xh(~)  .

We first observe that it suffices to prove the theorem when A is a
polynomial algebra k[Yl,  . . . , Y,]  . Indeed, we can write A as a quotient
of such an algebra A’ by an ideal ah ; write ai  for the preimage of ai  in
A’ , and let xi  be elements of A’ satisfying the conditions of the theorem
relative to the sequence a&  c ai c . . . c a; . Then it is clear that the
images of z&01 in A, where i > h(0) , satisfy the desired conditions.

Thus, in all that follows, we suppose that A = k[Yl,  . . . , Y,]  , and we
argue by induction on p .

A )  p=l.
We distinguish two cases:

Al) The ideal a1 is a principal ideal, generated by x1  4 k .
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Wehave x1  =P(Yl,...  ,Y,), where P is a non constant polynomial.
Let us show that, for a suitable choice of integers ri  > 0 , the ring A is
integral over B = k[xl, x2,.  . ,xm]  , with

xi  = x-y? (2 5 i 5 m).
For this, it suffices to show that Yl is integral over B But Yl satisfies
the equation

P(Yl,xz+Y~2,... ,xm+Yp-)  -X1 = 0. (*)
If we write P as a sum of monomials

P = C apYP, where p= (PI,... ,p,),and  a,#O,

equation (*)  becomes

c apYIP1  (x2  +  YlyP2 . ‘. (x,  + yp)Pm  _ x1 = o.

Set f(p)  = PI + f-2p2  + . . + r,P,, and suppose the ri  are chosen such
that the f(p) are all distinct (for example, it suffices to take Ti  = si  , with
s > sup(pj) ). Then there is one and only one system p = (pl, . . . ,p,)
such that f(p) is maximum, and the equation is written as:

apY[(‘) +  c Q&)Y,j  =  0,
j<f(P)

which shows that Yl  is indeed integral over B
Hence k(Y1,.  . . ,Y,) is algebraic over k(xl,  . . . ,x,)  , which im-

plies that the xi  are algebraically independent, and B is isomorphic to
k[X1,. . . , Xm]  . Moreover, alnB  = (xl)  ; indeed, every element q E alnB
can be written as q = xlq’  , with q’ E A n k(xl,  . . ,x,)  , and we have
A n  k(xl,... ,x,)  = k[xl,... ,xm]  since this ring is integrally closed;
whence q’ E B , which completes the proof of properties a) and b) in
this case.

A2) The general case.
We argue by induction on m , the case m = 0 (and also m = 1) being

trivial. Clearly we can suppose a1 # 0. Thus let x1 be a nonzero  element
of al ; this is not a constant since al # A. According to what has been
shown, there exist t2,. . . , t, , such that x1,  t2,.  . , t,  are algebraically
independent over k , that A is integral over C = k[xl, t2, . . . , tm]  , and
that xlA  n C = xlC  . According.to the induction hypothesis, there ex-
ist elements x2,.  . . ,x,  of k[tz,  . . . ,tm] satisfying the conclusions of the
theorem for the algebra k[t2,. . . , tm] and for the ideal al n k[tz,  . . . , tm]  .
One checks that x1,  x2,.  . , x,  satisfy our requirements.

B) Passing from p - 1 to p .
Let tl,.. . , t,  be elements of A satisfying the conditions of the the-

orem for the sequence al C . . C ape1 , and let T = h(p - 1) . Accord-
ing to A2), there exist elements x,.+1,.  . ,xm  of k[t,.+l,.  . . , tm] satisfy-
ing the conclusions of the theorem for k[t,+l,  . . . , tm] and for the ideal
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Qp  r-l k[t,+1,. . . , td  . Setting xi  = ti  for i < r , we obtain the family we
want, qed.

3. Applications. I. Dimension in polynomial algebras

Not&ion. If A is a domain which is an algebra over a field ICI  the
transcendence degree over k of the field of fractions of A is written as
alg dim, A .

Proposition 14. Let A be a domain which is a finitely generated
algebra over a field k . We have

dim(A) = alg dimk  A.

According to th. 2, there exists a subalgebra B of A which is isomor-
phic to a polynomial algebra k[Xl,  . . . , Xn]  such that A is integral over
B . According to prop. 3, we have dim(A) = dim(B) , and according to
prop. 13, we have dim(B) = n ; moreover, if we let L and K denote the
fields of fractions of A and B , we have

alg dim, L = algdimk  K = n,

since L is algebraic over K Whence the proposition.

Variant. Instead of applying prop. 13, we can apply th. 2 to a chain of
prime ideals of A. We deduce that the length of this chain is less than or
equalto  n (with B=k[Xl,... , Xn]  ) and we conclude as above.

Corollary 1. Let A be a finitely generated algebra over a field k , and
let p be a prime ideal of A . We have

dim(A/p) = algdimk(A/p).

This is obvious.

Corollary 2 ( “Nullstellensatz”). Let A be a finitely generated alge-
bra over a field k , and let m be a maximal ideal of A. The field A/m is
a finite extension of k .

Since m is maximal, we have coht(m)  = 0, and we apply corollary 1;
this shows that A/m is algebraic over k ; since it is finitely generated, it
is a finite extension of k .
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Proposition 15. Let A be a domain which is a finitely generated
algebra over a field k and let n = dim(A) . For every prime ideal p of
A, we have:

ht(p) + dim(A/p)  = n, i.e. dim(AP)  + dim(A/p)  = dim(A).

According to theorem 2, there exists a subalgebra B of A, isomorphic
to WI,...  ,&I, such that A is integral over B , and

pnB  = (X,,...,Xh).

Set p’ = p f? B . Since p’ contains the chain

0 c (Xl) c . . c (Xl,. . . ,Xh),

we have ht(p’) 1 h , and the opposite inequality follows from the fact
that p’ is generated by h elements, whence ht(p’) = h . Moreover,
B/P' = k[&+l,...  ,X,1, which shows that dim(B/p’)  = n - h. Since
A is integral over B , and B is integrally closed, the Cohen-Seidenberg
theorems show that ht(p)  = ht(p’) and dim(A/p)  = dim(B/p’)  . Hence
the proposition.

Corollary 1. The hypotheses and notation being those of theorem 2,
we have

ht(ai) = h(i) for i=l,...  ,p.

This is in fact a corollary of the proof.

A chain of prime ideals is called saturated if it is not contained in
any other chain with the same origin and extremity (in other words, if one
cannot interpolate any prime ideal between the elements of the chain); it is
called maximal if it is not contained in any other chain, or, what amounts
to the same, if it is saturated, its origin is a minimal prime ideal, and its
extremity is a maximal ideal.

Corollary 2. Let A be a domain which is a finitely generated algebra
over a field. All the maximal chains of prime ideals of A have the same
length, which is dim(A) .

Let p0 C p1 C . . . c ph be a maximal chain of prime ideals. Since it is
maximal, we have PO  = 0, and ph is a maximal ideal of A. We therefore
have dim(A/po)  = dim(A) and dim(A/ph) = 0. Moreover, since the
chain is saturated, one cannot interpolate any prime ideal between pieI
and pi  ; thus dim(A/pi-l)Pi  = 1, and by prop. 15 we have:

dim(A/p+l)  - dim(A/pi)  = 1.
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As dim(A/po)  g dim(A) and dim(A/ph)  = 0,  we deduce h = dim(A),
qed.

Remarks.
1) Corollary 2 can be split in two parts:

a) For every maximal ideal m of A, we have dim(A,)  = dim(A) .
b) All the maximal chains of prime ideals of A,,, have the same

length.
We will see in the following chapter that property b) is true, more
generally, for every local ring which is a quotient of a Cohen-Macaulay
ring (and in particular of a regular local ring).

2) Corollary 2 can also be deduced directly from th. 2.

4. Applications. II. Integral closure of a finitely
generated algebra

Proposition 16. Let A be a domain which is a finitely generated
algebra over a field k , let K be its field of fractions, and let L be a finite
extension of K . Then the integral closure B of A in L is a finitely
generated A -module (in particular it is a finitely generated k -algebra).

[ Compare this result with prop. 11: we no longer suppose that A is
a normal ring, nor that L/K is separable. ]

According to th. 2, A is integral over a subalgebra C isomorphic to
WI,...  ,-Ll, and B is obviously the integral closure of C in L . It thus
suffices to do the proof when A = k[Xl,  . . . , Xn]  . Moreover, being free
to extend L , we can suppose that the extension L/K is quasi-Galois; if
we write M for the largest purely inseparable extension of K contained
in L , the extension L/M is separable. Let D be the integral closure
of A in M ; if we know that D is finitely generated as a module over
A , proposition 11, applied to L/M , shows that B is finitely generated
as a module over D , whence over A. Finally, we can thus suppose that
the extension L/K is purely inseparable. The extension L is generated
by a finite number of elements yi  , and there exists a power q of the
characteristic exponent of k such that

y; E K = k(X1,.  . . ,Xn).
Let cl,.. . , c, be the coefficients of each of the yy  , expressed as rational
functions in the Xj The extension L/K is then contained in L’/K ,
with:

L’ = k/(X;-I,.  . . ,X:-l), k’ = k(c;-I,.  . . ,cg’).
The integral closure of A = k[Xl,  . . . , Xn]  in L’ is clearly equal to

B’ = k’[X;-I,.  .  ,X:-l],
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and B’ is a free A -module with finite basis. Hence B is finitely generated
as a module over A, qed.

Remark. In the terminology of [EGA], Chap. 0, 23.1.1, proposition 16
means that every field is “universally Japanese”. According to Nagata,
every Dedekind ring of characteristic zero (in particular Z ), and every local
noetherian complete ring, is universally Japanese (cf. [EGA
7.7.4, and [Bour], Chap. IX, 52).

, Chab.  IV,

5. Applications. III. Dimension of an intersec
affine space

tion in

We want to show that, if V and W are two irreducible subvarieties of an
affine space, and if T is an irreducible component of V n W , we have the
inequality:

codim(T) 5  codim(V) + codim(W).

In algebraic language, this is expressed as:

Proposition 17. If p’  and p”  are two prime ideals of the polynomial
algebra A = k[Xl,.  . ,X,1, where k is a field, and if p  is a minimal
element of V(p’ + p”) , we have

ht(P)  I ht($)  + ht(p”).

We first prove two lemmas:

Lemma 6. Let A’ and A” be domains which are finitely generated
algebras over k . For every minimal prime ideal p  of A’ @k  A” , we have:

dim(A’ @k  A/‘/p)  = dim(A’ @k  A”) = dim(A’)  + dim(A”).

(In geometric language: the product of two k-irreducible varieties of di-
mensions T and s decomposes into irreducible varieties of dimension
T  +  S .)

Let B’ and B”  be k-polynomial algebras of which A’ and A” are
integral extensions; let K’ , K” , L’  , L” be the field of fractions of A’ ,



48 III. Dimension Theory

A” , B’ , B”. We have the diagram of injections:
0 - L’  @k  L” - K’ @‘k  K”

0 - B’ ‘8’k  B”  - A’ @‘k  A”

0 0
As  Kl is  L’  -free  and K”  is L” -free, K’ @.k  K”  is L’ @k  L” -free; in
particular,  it is a torsion-free module over the polynomial algebra B’@kB”  .
The intersection of the prime ideal p with B’ @k  B”  is 0 , and the Cohen-
Seidenberg theorems show that

dim(A’ @k  A/‘/p)  = dim(B’ 8.k  B”)
= dim( B’) + dim( B”)
= dim(A’) + dim(A”),

qed.

Lemma 7. Let A bea  k-algebra,let  C=A@kA,andlet  $:C+A
be the homomorphism defined by 4(u @ b) = ab .
(i) The kernel in  of 4 is the ideal of C generated by the elements

l@a-a&31, for a E A .

(ii) If p’ and p” are two ideals of A, the image by 4 of the ideal

p’  ca  A + A @  p”

is equal to p’ + p” .

It is clear that 1 @a  -a @I  1 belongs to b for every a E A . Conversely,
if C aibi  = 0 , we can write:

-&@bi  = C(a,@l-l@Ui)(l@b,),

which shows that C ai  8 bi  belongs to the ideal generated by the elements
(ai  8 1 - 1 @ ai) . Assertion (ii) is trivial.

We now proceed to prove the proposition. Set

C=A&A,  D=A/p’&A/p”,  t = p’@A+AA&P.

We have the exact sequence:
O-+r+C+D-+O.

Let !$3  = d-l(p) ; it is obviously a minimal prime ideal of V(d  + r) , and
its image 0 in D is thus a minimal prime ideal of V@‘) , where we write
i3’ for the image of 0 in D. But lemma 7 shows that 0 is generated
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by the n elements X, @ 1 - 1 8 Xi ; thus we see that ht(Q) 5 n . Let
ilc be a minimal prime ideal of D contained in rl ; we have a fortiori
ht(rl/L!c) < n . But according to lemma 6, we have

dim(D/&,)  = dim(A/p’)  + dim(A/p”);

since

we fmd
ht(rl/&)  = dim(D/Qo)  - dim(DlQ),

n > ht(ll/&)  = dim(A/p’)  + dim(A/p”)  - dim(A/p),

hence

i.e.
n - dim A/p < n - dim A/p’  + n.  - dim  A/p”,

qed.
ht(p)  5 ht(p’)  + ht(p”),

Remark. The proof above consists in replacing the triple (A; p’,  p”) by
the triple (A @k  A; 0, t) . This is called reduction to the diagonal (it is
the algebraic analogue of the set-theoretic formula VII W = (V x W) n A ).
We will see in Chap. V that this method applies to much more general cases,
and will allow us to extend the preceding proposition to all regular rings.



Chapter IV. Homological Dimension
and Depth

A: The Koszul Complex

1. The simple case

Let  A be a commutative ring (which is not assumed to be noetherian  for
the time being) and let z be an element of A We denote by X(z) , OI
sometimes K*(x)  , the following complex:

K,(z)  =  0 if i # 0,l;
Kl(Z)  = A;
K,,(s) = A ;

the map d : Kl(z) + Ko(z) is the multiplication by z.

In what follows, we identify Kc,(z)  with A, and we choose a basis e,
of the A-module Kl(z) such that d(e,)  = I. The derivation

d : Kl(z) --f  K&)

is thus defined by the formula:

d(w)  = ox, if aEA.

If M is an A-module, we write K(z,M)  for the tensor product
complex K(s) @a  M. Then

K&M),  =  0 if n # O,l,
K(x,  M)r,  = K&r) @A  M = M,
K(x,M)I =  K, ~3~  M  N M,

and the derivation
d: K(z,M)l  + K(z,M)o

is defined by the formula
d(e,  c3 m) = zm where m E M.
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Corollary If L is an acyclic complex on M , and  if z is not a zere
divisor  in M (i.e. Ker(x,) = 0), then K(z) @a  L is an acyclic complex
on M/+M.

Indeed, the proposition shows that one has H,(K(z)  8~  L) = 0 for
p > 1, that Hl(K(s)  @a  L) = Hl(K(z)  @R  M) = Ker(z,) = 0, and that
Ho(K(x)  @A  M) is equal to MfsM.

The homology modules of K(x,  M) are:

Ho(K(z),M)  = M/TM,
H1(K(z),M)  = Ann&)  = Ker(z,v  : M + M)
H,(K(s),M)  =  0 ifi#O,l.

We denote them by H&z,  M)

Now let L be a complex of A-modules. The homology modules of
the complex K(z) @a  L are related to the homology modules of L in the
following way:

Proposition 1. For every p > 0, we have an exact sequence:

o -t Ho@,  H,(L))  + H,(K(z)  @‘a  L) * HI@,  HP-l(L))  - 0.

The  natural injection A + K(z) gives an embedding of complexes

L=A@~L+K(z)@AL.

Similarly, the natural projection K(z) + KI(z)  = A gives a homomor-
plan  of complexes

here, L[-1] is the comple;  bediced  from  L by a shift of -1 (i.e.
L[-11,  = Lnml  ), together with a sign change on the boundary map.

We thus get an exact sequence of complexes
0 + L -K(s) @‘a  L + L[-l] + 0,

hence a homology exact sequence:

5 H,(L)  --t  H,(K(z)  @A  L) + H&-l])  L HP-~(L).

The boundary operator d maps H,(L[-11)  = HP-l(L)  into &-1(L)  ; a
simple computation shows that it is equal to scalar multiplication by z
Hence the above exact sequence splits into short exact sequences:

0 +X,  + H,(K(z)  @a  L) + YP--l  ----t  0,

with
X* =  Coker(s :  H,(L)  + H,(L))  = H&x,  H,(L)),
Yp  = Ker(s  : H,(L) - H,(L)) = HI@,  H,(L)),

qed.

A complex L = (Ln)  , n 2 0, is called an acyclic complex on M if
H,(L)  = 0 for p > 0 and H,,(L) = M We thus have an exact sequence: I

+ L, + L,-l  - + L1  - Lo  - M + 0.

2. Acyclicity and functorial properties of the Koszul
complex

If x = (a,.  ,x7) is a family of elements of A, we let K(X), or
K(zl, , ~7) , denote the tensor product complex

K(x)  = Kh) @A  Kbz)  @a  @a  K(z,).
Then  K,(zI , , 2,)  is the free A -module  generated by the elements

ei,  c3 @ eip , il < iz < < i, , where es = ezj , and in particular it is
isomorphic to A\‘(A’) , the p-th exterior product of A?.

If M is an A -module, we write K(zl, ,z,;  M) , or K(x,  M) , for
the tensor product complex

K(zt,...  ,s,)@aM  = K(x)@~hf.
The module KP(x,  M) is thus a direct sum of modules

es,  @A  @A  eip @a  M , where il < iz < < ip )
and the derivation

d : K&C, M) + KP-~(x, M)
is given by the formula: (*)

qei, 8’ ” Bei&,  @mm)  = &)k+lei,  c3 ” Be; @’  ). Be& @ (cl&m).
k=l

In what follows, we denote by &,(x,  M) the p-th homology module
of the Koszul complex K(x,  M) We have:

Ho(x,M)  =  M/(x1,...  ,z,)M  =  M/z&f,
H,(x,M)  = {m E M : zim = 0 for all i}.

Remark. When me wants to mention the ground ring A, one writes
KA(z), K+,M)  , H,A(x,  M), etc. Note however that K(x,  M) and

(*I We are using here the topologists’ convention that a symbol below ‘c  ^ ‘1  k
to be omitted. For instance, for p = 2, one has

a%,  ‘8  ei,  8 m)  = -ei, l% (s,m)  + ei,  c3 (2i,rn).
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f&(x, M) depend only on the abelian  group M and on the endomorphisms
(z;)M  ; they do not depend on A.

A: The Koszul  Complex 5 5

functorial for a given x, and the iimctor  M - K(x,  M) is exact. If
0 + M’ + M * M”  + 0 is an exact sequence, we  obtain an exact
sequence of complexes:

0 - K(x,  M’) + K(x,  M) + K(x,  M”) + 0

and an exact sequence of homology:

0 + H,(x,  M’) + H&M)  + H,.(x,  M ” )
+ H,-t(x,M’)  + +
- Ho(x,M’)

H1  (x,  M”)
- H&M)  + Ho(x,M”) --t 0.

Moreover, Ho(x, M) is naturally isomorphic to A/x@*  M (where x
denotes, as usual, the ideal generated by ~1,.  , zr ). This isomorphism
of functors  extends in a unique way to a natural transformation

ti : f&(x, M) + Tor;(A/x,  M),

cf. [GE],  Chap. III.

The two propositions below are concerned with the case where these
homology modules are zero  for p > 0.

Proposition 2. Under the preceding hypotheses, if for all i , 1 5  i < T ,
zi is not a zeredivisorin  M/(zl,...  ,xi_l)M,  then HJx,  M) = 0 for
p > o .

The proposition is true if T = 1 : saying that Hl(zl, M) = Anne
is zero  is equivalent to saying that z1 is not a zero-divisor in M

Thus  suppose  tha t  T > 1 and that  the propaition  has  been
proved for the complex K(sl, , ~-1;  M) , and let us prove it for
K(x,,  ,  zr; M ) The canonical map from K~(sl,.  ,z,_1;  M) into
H&l  I...  ,z,el;M)  = M/(x,  ,...  ,z,_l)M  defines K(zl,...  ,z,_l;M)
as a complex over M/(x1,, ,z,_l)M  , and the corollary to proposition 1
can be applied.

Proposition 3. I< in addition to the preceding hypotheses, we suppose
that A is noetherian,  that M is finitely generated, and that the xc belong
to the radical r(A) of A, then the following properties are‘equivaknt:

a) H&c, M) = 0 for ,u  2 1.
b )  Hl(x,M) =  0 .
c) For every  i , 1 5  i < 7, 2i i s  n o t  a zerc+divisor i n-

M/(51,. ,xi+l)M.

It remains to show that b) a c) , which has already been done if
T = 1.  Assume the result  for K(x’,  M) where x’ = (~1,.  ,zr-l)  and
let us prove it for K(x,  M) By the corollary to proposition 1, we have an
exact sequence

0 + Ho(rmH~(x’,M))  + Hl(x,M)  + H~b,,Hcdx,W)  - 0.

Hence Hl(xl  M) = 0 + Hl(x’,  M)/s,Hl(x’,  M) = 0; by Nakayama’s
lemma, this shows that Hl(x’, M) = 0 and by the induction hypothesis
we have property c) for 1 5  i < T Moreover, the same exact sequence
shows that Hl(z,,  Ho(x’, M)) = 0, which is property c) for i = T

Corollary 1. Condition c) does not depend on the order of the sequence
x = ( 5 1 , . . .  ,5,}.

Remark. The correspondence between M and K(x,  M) ia obviously

Corollary 2. Suppose that conditions a), b),  c) of proposition 3
are satisfied for A (i.e., for 1 5  i 5  r, z; is not a zero-divisor in
A/(s,,  ,z<-l)A  ). Then the map

Q : H,(x, M) + Tor”(A/x,M)

is an isomorphism for every i  and for every A -module M (not necessarily
finitely generated).

This follows from proposition 3 (applied to the module A), since it
implies that K(x) is an A-free resolution of A/x.

Similarly, we have natural maps

$ : Exti(A/x,  M) + H’(Homa(K(x).  M)).

Since Homa(K(x),M)  is isomorphic (with a dimension shift) to K(x,  M)
(autoduality of the exterior algebra!), we have

H”(Hom/,(K(x):M))  ” H,+(x,M).

Hence Q  may be viewed as a homomorphism of Exti(A/x,M)  into
H,-i(x,  M) ; for i = 0, this gives the natural isomorphism between
Homa(A/x,  M) and H,(x,  M)

Corollary 3. Under the same hypothesis as in car. 2, the map

4: Ext’A(A/x,M)  - H,-i(x,M)
is an isomorphism for every i and for every M

The proof is the same.
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Now let B be the polynomial ring in r indeterminates  X1,. , X, ,
with coefficients in A, i.e. B = A[Xl,  ,X,1 Define B-module struc-
tures on A and M by the equalities: X,a = 0 if a E A and X,rn  = z;m
if m E M Then KB(X1,,  , XT)  gives a free resolution of A and

KA(X,M)  = KB(Xl,...  ,X,;M);

thus  we have natural isomorphisms:

H&c,  M) %A  Tor:(A,  M) %  ExtP,-“(A,  M).

whence

A: The Koszul Complex 57

On the other hand, the Samuel polynomial P,(M) has degree < r ,
and we have

PxW,4  = ex(M,r)$  +Q(n), with degQ<r,

where e,(M,r) = A’P,(M)  , cf. Chap. II, part B, $3.

We want to compare the integers x(x,  M) and e,(M, T)  :

Proposition 4. The annihilator of H&C,  M) , --cc < i < +m  , contains
x and Ann(M).

Indeed, we have

Ann~(Tor:(A,  M)) 3 ARAB  + Arms(M),

but Ann&A)  = (Xl,.  ,X,)  and

Ann&M)  > Anna(M) +(X, - zl,, ,X, -xv).

Finally, one shows without difficulty  that if S is a multiplicative subset
of A, K(x,  MS) = K(x,  M)s and H(x,  MS) = H(x,  M)s  Similarly if A
is noetherian  and M is finitely generated, and if the A -modules are given
the x-a&c  filtration, then K(x,  G) = Km),  H(x,  A?) = HG) ;
the relations between K(x,  M) and the Koszul complex of gr(M)  will be
studied in the next section.

Remark. For more details on the Koszul complex K(x,  M) , see Bour-
b&i, AIg&bre,  Chap. X,59,  and [Eis], $17.

3. Filtration of a Koszul complex

In this section, A is local no&he&n, the ideal x = (~1,.  , z~)  is con-
tained in the maximal ideal of A , and M is a finitely generated A -module
such that !(M/xM)  < cc.

The A -modules HP(x, M) are finitely generated and they are anni-
hilated by x + Ann(M) , cf. prop. 4; hence they have finite length, and we
may define the Euler-Poincar6  characteristic1_

x(x,M)  = c (-l)PWp(~~M)).
p=o

Theorem 1. x(x,  M) = e&V  r).

Corollaly We have x(x, M) > 0 if dim(M) = T and x(x, M) = 0 if
dim(M) < T

This  follows from the properties of e,(M,r)  proved in Chap. II,
part A.

Remark. Note that x(x,  M) is 2 0. This is a general property of
Koszul complexes in noetherian categories, cf. Appendix II. More generally,
we shall see that the “higher Euler-Poincar6  characteristics”

xik  E) = c (-l)“Vfi+,(x,  M))
Pa

are 2 0 for every i 2 0.

Proof of theorem 1. We do it in several steps:

(3.1) Filtration of the comples  K = K(x, M)
Write K as  the direct sum of its components KP  = KP(x,  M) For

every i E Z : define the submodule F’KP  of KP  by:

F”K,  = x’-~K~, where x’ = A if j < 0.

The direct sum F”K  of the F’K, is a subcomplex of K We thus get a
decreasing filtration:

K=F’K > F ’ K  >

which is an x-good filtration of K

(3.2) Let gr(A) be the graded ring associated with the x-adic filtration
of A. We have g+(A) = A/x  and gr,(A)  = x/x2  ; denote by <I,,  :&
the images of ~1,.  ,z? in gr,(A)  and put E = ((1,. ,&) Let gr(M)
be the graded module associated with the x-adic filtration of M ; it is a
graded gr(A)  -module. Then:
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The graded complex  gr(K) = @* F”K/F”+‘K  is isomorphic to the
KoszuJ  complex K(E,gr(M))

This is clear.

(3.3) The homology modules &(E,gr(M))  have finite length.

Indeed, they are finitely generated modules over gr(A)/<  = A/x,
and they are annihilated by the ideal Ann(M). By assumption, the ring
A/(x + Ann(M)) is artinian.

(3.4) There exists m > 0 such that ffp(F’K/Fi+‘K)  = 0 for all i > m
a n d  all p

This follows from (3.3) since H,(&  gr(M)) is the direct sum of the
ffp(FiK/F”+‘K)

Let us now choose m as in (3.4),  with m 2  r

(3.5) We have H,(F’K/F “+jK)=Oforp~Z,  i>m,jzO.

This follows from (3.4) by induction on j , using the exact sequence
of complexes:

0 -t JTi+j-lK/F”+jK  + FsK,F”+>K  + F”K/F’+j-1K  + 0.

(3.6) We have H,(F’K)  = 0 for i > m, and all p

Let Zk  (rap.  Bb)  denote the module of cycles (resp. boundaries) in
F”Kp  By (3.5) we have H,(F”K/SF*K)  = 0 for every j 2  0. Hence:

Z” c B” +x3F’KpP P for all j 2  0.

This means that Z;  is contained in the closure of B; for the x-adic
topology of F”Kp  , hence in Bi (cf. Chap. II, car. 4 to theorem 1). This
shows that H,(F’K)  = 0.

(3.7) If i > m, the natural map Hp(x,M)  = H,(K) -+ H,(K/F’K)  is
an isomorphism  for every p

This is a reformulation of (3.6).

(3.8) We have x(x,M) = x(K/F$K) if i > m.

By (3.7),  we.  have

x(x,~)  = C(-I)P~(H~(K/F”K)).
P

Note that K/F”K  has finite  length. It is well-known that, if a complex
has finite length, its Euler-Poincark characteristic is the same as that of its

homology. Hence:
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C (-l)p!(Hp(K/F”~)) = C (-lye(Kp/FiKp) = x(K/F”K),
P P

hence x(x,  M) = x(K/FiK)

(3.9) We have x(x,  M) = x,(-l)“(i)  !(M/+*M)  if i > m

This follows from (3.8) since Kp/piK,, is isomorphic to a direct sum
of (i)  copies of M/x’-*M.

(3.10) End ofpmof
If i is large enough, we may rewrite (3.9) as

X(74 = ~(-l)~($Jx(M-P).

A simple computation shows that the right side is equal to A’P,(M)  , qed.

For future use; let us record:

Theorem 1’. If H&,gr(M))  = 0 for all p > 0, then If&, M) = 0
for all P > 0.

Indeed: the same  argument as above shows that f&(F”K/E”+‘K)  = 0
for all P > 0 and all i; hence also &(F’K/F’+3K)  = 0 for p > 0,
i,j 2  0, As in (3.6),  this implies ff,(F$K)  = 0 for p > 0 and all i 2  0;
by choosing i = 0, one gets H,(K)  = 0 for p > 0, qed.

R e m a r k . The proofs of theorem 1 and theorem 1’ could be some-
what shortened by using the spectral sequence associated to the filtration
(F’K)  , and showing (as in (3.6)) that it is convergent. This method was
the one used in the original French text.

4. The depth of a module over a noetherian local ring

In this section, A is a noetherian local ring, with maximal ideal m and
residue field k = A/m.  All A -modules are assumed to be finitely gener-
a ted

Let M be such a module. An M-sequence is defined as a sequence
a = {al.. , a,} of elements of m which &is&  the equivalent three con-
ditions:
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a) For every i , 1 5 i 5 p, ai  is not a zer+divisor in M/ai-lM,  where
q = 0 and ai- = (al,.  ,a;-~).

b) K(a,  M) is an acyclic complex (in dimension > 0 ).
c )  fh(a,M)  =  0.

The equivalence of these conditions has already been proved (proposi-
tion 3); in particular, these conditions do not depend on the order of the se-
quaice. If we  let M, denote the module M/aiM , and if b = {bl,  , b,}
is an MP -sequence, the sequence {a, b} = {al,. , a*, bl,  , b,} is an
M-sequence.

Such a sequence b exists (and has at least one element) if and only if
m contains an element which is not a zero-divisor in MP , which is to say
if and only if m is not associated to MP.

This last condition is equivalent to the equality HomA(k,  MP)  = 0,
and it depends only on the number p and not on the sequence a, as follows
from:
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This shows that the length p of the sequence depends only on M. In
other words:

Proposition 5. Under the above hypotheses, Ext:(k,  M) is isomorphic
to Hom(k, MP)  and Ext>(k,  M) is 0 for i < p.

The proposition is true if p = 0. Thus suppose it has been proved
for every A -module N and every N-sequence of fewer than p elements,
and let us show it in our case. Since {a2,. , aP}  is an MI -sequence,
we have Hom(k,  M,) ZG Ext?‘(k,  Ml), and it remains to show that
ExtP-‘(k,  Ml)  G’  ExP(k, M) The endomorphism of M defined by al
gives rise to the exact sequences:

O+M%M-Ml-0

and

‘. + Extp-‘(k,  M) + E&‘(k,  Ml)  --f ExP(k, M) % Extp(k,  M).

But Ext?‘(k,  M) = Hom(k, MP-l)  = 0 and the annihilator of
ExP(k, M) contains Ann(k) = m and hence al ; the homomorphism from
ExtP-l(k,  MI) into ExP(k, M) is therefore an isomorphism. A similar ar-
gument shows that Ext’(k, M) = 0 for i < p

Now suppose M # 0 Any M-sequence can be embedded in a maxi-
mal one: if not there would exist an infinite  sequence (al, a2,.  ) having
property a) above, and the corresponding sequence of ideals al c a* i
would be strictly increasing.

Hence there exists a maximal M -sequence (al,. , aP)  ; by proposi-
tion 5, we have

Exti(k,  M) = 0 for i <p,
and Exts(k,M)  = Homa(k,  MP)  # 0.

Proposition and Definition 6. AI1  the maximal M-sequences have
the same  number of elements, say p Every M-sequence can  be extended
to a maximal M-sequence. The integer p is the infimum  of the n such
that Ext:(k,  M) # 0; it is called the depth of M and is denoted by
depth, M

(In the original Rench text, the depth was  called “codimension  ho-
mologique”;  this terminology is not used any more.)

C o r o l l a r y With the above notation, one  has

depthA  M; = depth, M - i.

Remark. It is sometimes convenient to extend definition 6 to the trivial
module 0 by putting depth, 0 = +cc

Let us again assume that M # 0

Proposition 7.
(i)  Every M-sequence can be extended to a system ofparameters of M
(ii) One has depth, M < dim A/p for every p E Ass(M)

The proof is by induction on p = depth, M
Let (al,.  , aP)  be a maximal M-sequence. We have al $ p for

every p E Ass(M), cf. Chap. I, prop. 7, hence

dimM/alM  = dimM - 1,

cf. Chap. III, car.  5 to th. 1. By induction on i , we see that

dim(M/(al,...  ,ai)M)  = dimM -i for i=l,...  ,p,

which implies (i), cf. Chap. III, prop. 6.
Let NOR’ p be an element  of Ass(M).  We have an exact sequa~~

0 + Hom(A/p,  M) 2 Hom(A/p,  M) + Hom(A/p,M/alM).

Since p belongs to Ass(M) , Hom(A/p,  M) is nonzero.  By Nakayama’s
lemma, the same is true for Hom(A/p,  M)/al  Hom(A/p,  M) , hence also
for Hom(A/p,  M/alM)  This means that there is a nonzero  element of
M/alM  which is annihilated by p + alA. By Chap. I, proposition 7,
p + alA  is contained in a prime ideal q belonging to ASS(M/IQM)  The
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induction hypothesis shows that dimA/q  > p - 1. But one has
dimA/q  = dimA/p  - 1 ,

since A/q = (A/p)/al(A/p) , and al $ p  Hence dim A/p 2  p , qed
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Proposition 8. (cf. [Bow],  Chap. X, 51,  prop. 1) Let
04M’-tM+M”+O

be an exact sequence of A -modules. Define:

p = depth, M, p’ = depth, M’, p”  = depthA  M”.

Then one has either p’ = p 5  p” , or p = p” < p’ , or p” = p’ - 1 < p

This follows from the exact sequence
+ E&&M”)  + Ext;(k,M’)  + Ext:(k,M)  + Ext\(k,M”)  +

by considering the first term (on the left) which is # 0, and noticing that
the next one is nonzero  too.

Proposition 9. Let a  be the completion of A for the m -adic  topology,
and 6f=A+M.  Then:

i,l  depthi  M  =  depthA  M
ii)  Every maximal M-sequence is a maximal ~-sequence

Assertio?  i) follows from the fact that a@,Exti(k, M) is isomorphic
to Ext; (k, M)

Td prove b), consider a maximal M-sequence a = {al, , a,} With
the same notation as above, we  have the exact sequences

0 i M,_,  % MC_,  t M, - 0

and therefore also

0 - n;i,-l  -;1;  Aif-1 + A&  i 0
Hence a is an ti  -sequence, which is maximal because of i)

B: Cohen-Macaulay Modules

(See [Bow],  Chap. X, 52  and also [H2],  [BrH].)

Let A be a noetherian local ring, with maximal ideal m = m(A) ; let
E be a nonzero  finitely generated A -module.

1. Definition of Cohen-Macaulay modules

By prop. 7, for every p E Ass(E), we  have

dim(A/p)  2 depth(E).

Since dimE  = sup dim(A/p)  for p E Ass(E), we have in particular
dim E 2  depth E

Definition 1. The module E is called a Cohen-Macaulay module if

dim(E) = depth(E).

The ring A is called a Cohen-Macaulay ring if it is a Cohen-Macaulay
module when viewed as  a module over itself.

Examples.
1 ) An artinian  local ring, a local domain of dimension 1,  are Cohen-

Macaulay rings.
2) A local integrally closed domain of dimension 2 is a Cohen-

Macaulay ring. Indeed, if z is a nonzero  element of m , the prime ideals
p of Ass(A/zA)  are of height 1, thus distinct from m since dim A = 2.
We  thus conclude that depth(A/sA)  > 1. whence depth(A) > 2, which
shows that A is a Cohen-Macaulay ring.

Proposition 10. For E to be a Cohen-Macaulay module, it is necessary
and sufficient that the a  -module  k is a Cohen-MacauJay  module.

This follows from the formulax

depth(E) = depth(k) and dim(E) = dim(k).

Proposition 11. Let A and B be two noetherian local rings and let
r$  : A + B be a homomorphism which makes B into a finitely generated
A-module. If E is  a finitely generated B-module, then E is a Cohen-
MacauJay  A module  if and only if it is a Cohen-Macaulay B-module.

This follows from the following more general proposition:

Proposition 12. Let A and B be two noetherian local rings, and Jet
4 : A + B be a homomorphism which makes B into a finiteJy  generated
A -module.  If E is a finitely generated B -module,  then:

d e p t h , ( E )  = d e p t h , ( E )  a n d  dima =  d i m e ( E ) .
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The homomorphism d : A + B maps m(A) into m(B): if not,
we would have m(A)B  = B , contrary to Nakayana’s  lemma. Write En
(rap.  Eg ) for E viewed as an A-module (resp.  a B-module). Let
(a~,  , a,) be a maximal Ea -sequence. If we let bi  = $~(a~)  , the bi
form an Eg -sequence. Furthermore, this  EB  -sequence is maximal; in-
deed, since (ai) is maximal, there exists a nonzero  A-submodule F’ of
F = E/(al,  ,a,)E  which is annihilated by m(A) , and F’ generates
a B -submodule  of F which is of finite length over B , which shows that
(bI,  , b,) is a maximal Eg -sequence. Thus

depthA  = n = depth,(Es).

The formula for the dimension is easy (e.g. use prop. 3 of Chap. III).

2. Several characterizations of Cohen-Macaulay
modules

Proposition 13. Let E be a Cohen-Macaulay A -module of dimension
n For every p l Ass(E) , we have dim A/p = n , and p is a minimal
element of Supp(E)

Indeed, we have dim(E) > dim(A/p)  2 depth(E) (cf. prop. 7),
whence dim(A/p)  = dim(E) = n, since the extreme terms are equal.
Furthermore, p contains a minimal element p’ of Supp(E) ; by th. 1 of
Chap. I, we have p’ E Ass(E) ; the above shows that

dim(A/p’)  =  n =  dim(A/p),

whence p’ = p , qed.

Proposition 14. Let E be a Cohen-Macaulay A -module of dimension
n > 1, and let z E m such that dim(E/xE)  = n - 1 Then the endomor-
ph& of E defined by 3:  is inject&  and E/xE is a Cohen-MacauJay
module.

Let ~1,.  , pk be the elements of Ass(E) If z belongs to one of the
p; , say ~1, we will have p1 E Supp(E/zE) , whence dim(E/zE)  2 n
Thus z does not belong to any pi, which meanz  (cf. Chap. I, prop. 7)
that the adomorphism-of
depth(E/zE)  = depth(E)
EfxE  is Cohen-Macaulay.

E defined by z is injective.  It follows that
- 1 (COT.  to prop. 6),  whence the fact that
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Theorem 2. If E is a Cohen-Macaulay module, every  system of ps-
ram+m  of E is an E-sequence. Conversely, ifs system of parameters of
E is an E-sequence, E is a Cohen-Macaulay module.

Suppose that E is a Cohen-Macaulay module of dimension n ; let
(XI,. , z,,)  be a system of parameters of E We will show by induction
on k that (~1,.  ,zk) is an E-sequence and that E/(zl,.  , zk)E  is
a Cohen-Macaulay module. For k = 0, this is clear. We pass from k to
k + 1 using prop. 14, and observing that dim(E/(zl,.  , zk)E)  = n - k
since the zi form a system of parameters of E

The converse is trivial.

C o r o l l a r y If E is a Cohen-Macaulay module, and if a is an ideal
of A generated by a subset of k elements of a system of pammeters  of
A, the module E/aE is a Cohen-Macaulay module of dimension equal to
dim(E) - k.

This has been proved along the way.

The condition of theorem 2 can be transformed using the results of
part A. Let E be an A -module of dimension n , and let x = (xl,.  , zn)
be a system of parameters of E ; let us also write x for the ideal generated
by the xi. Let e,(E,n) denote the multiplicity of x with respect to E
(cf. th. l), let H&,  E) denote the q-th homology group of the Koszul
complex defined by x and E i and let gr,(E)  denote the graded module
associated to E filtered by the x-a&c  filtration.

Theorem 3. Let E be of dimension n If E is a Cohen-Macaulay
module, then for every system of parameters x = (~1,.  , z,)  of E , we
have the  following properties:

i) e,(E,  n) = e(E/xE)  , length  of E/xE.
i i )  gr,(E)  =  (E/xE)[X1,.  ,  Xn]

iii)  Hl(x,  E )  =  0
iv) &(x,E)  = 0 forsll  qZ1.
Conversely, if a system of parameters of E satisfies any  one  of these prop
erties,  it  satisfies  all of them and E is a Cohen-Maca&’  module.

Each  of the properties i), ii), iii), iv) is equivalent to the fact that x
is an E-sequence: for iii) and iv), this is proposition 3; moreover i) and
ii)  are equivalent (Chap. II, th. 2’); iv) implies i) according to theorem 1;
finally ii) implies that the J&(&G(E)) are zero  for i 2 1, which implies
(cf. part  A, th. 1’) that H&E)  = 0 for i 2 1. The theorem follows
from that.
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3. The support of a Cohen-Macaulay module

Theorem 4. Let E be a Cohen-Macaulay module of dimension n , and 1,”
let zl,.  ,zl.  E m be such that dimE/(zl,. ,z,)E  = n - T. Then ‘:
every element p of Ass(E/(xl,  ,z,)E)  issuch  that dim(A/p)  = n-r

The hypothesis means that zl,. , zF is a subset of a system of pa-
rameters of E According to the corollary to theorem 1, the quotient mod-
ule E/(zI,  , s,)E is a Cohen-Macaulay module of dimension n-r,  and
the theorem follows by applying prop. 13.

Theorem 4 characterizes the Cohen-Macaulay modules. More pre-
cisely:

Theorem 5. Let E be of dimension n Suppose that, for every family
(zl,,  ,x,)  of elements of m such that dim E/(x1,. , s,)E = n - T,
and for every p E Ass(E/(zl,. ,z,)E) , we have  dim(A/p)  = n - r.
Then E is a Cohen-Macsulay module.

We argue by induction on n, the case  n = 0 being trivial. Thus
suppose n 2 1 Applying the hypotheses to an empty family of elements
zi i we see that dim(A/p)  = n for every p E Ass(E) ; as dim(E) > 1 , there
is therefore some 51 E m(A) which belongs to none of the p E Ass(E).
The endomorphism of E defined by z1 is then injective,  and we have:

depth(E) = depth(E/zlE)  + 1, dim(E) = dim(E/zlE)  + 1.

Moreover, it is clear that the module E/xlE  satisfies the hypotheses of
th. 5 with n - 1 instead of n ; according to the induction hypothesis, it is
thus a Cohen-Macaulay module, and so is E

Theorem 6. Let E be a Cohen-Macaulay module of dimension n ,
and kt p E Supp(E) Then there exists an integer r ! and  a subset of T
elements x1,  ,x7  of a system of parameters of E , such that p belongs
to  Ass(E/(z~, ,z,)E)  Further,

dim(A/p)  =  n-7,  dim(E,)  =  T,

and Ep  is a Cohen-Macaulay A, -module.

Let ~1,.  ,zr be a subset of a system of parameters of E contained
in p and maximal with respect to this property. Let pi be the elements
of Ass(E/(zl,  , z,)E) ; according to th. 4, we have

dim(A/pi)  = n-r for every i
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It follows in particular that the p; are the minimal elements of
Supp(E/(zl,.  ,  s,)E) Since p E Supp(E) , and zl,. ,G  are  con-
tained in p i we have p E Supp(E/(zl,  , s,)E) , and p contains one
of the pi, say ~1.  I claim that p = ~1. If not, we would have
dim(A/p)  < dim(A/pl)  = dim(A/p;)  , whence p # pi for every i, and
we could find an element z,.+~  in p which belongs to none of the pi ; the
set zl,. ,zr+l  would thus be a subset of a system of parameters of E /
contrary to the maximality  of ~1,.  , z7

Thus p = p1 , which shows that the zi satisfy the stated condition,
and proves at the same time that dim(A/p)  = n-r Moreover, the z; form
an A,, -sequence of EP , which is at the same time a system of parameters,
since p is a minimal element of Supp(E/(sl,  , z,)E) This proves that
EP is a Cohen-Macaulay module of dimension T , qed.

Corollary 1. Every localization of a Cohen-Macaulay ring is a Cohen-
Macaulay  ring.

Corollary 2. Let E be a Cohen-Macaulay module, and let p,p’ be
two elements of Supp(E) , with p c p’ Then all the saturated chains of
prime ideals joining p to p’ have the same length, which is

dim(A/p)  - dim(A/p’).

It suffices to consider the case where p and p’ are consecutive,
i.e. where dimAP,/pAp, = 1 ; then we have to show that

dim(A/p)  - dim(A/p’)  = 1.

But, applying th. 5 to the module ED,  , we find:

dimEp  = dimEp, - dimAP8/pApr  = dimED,  - 1.

Applying it to E , we find:
dimEp  = dimE-dimAlp,

dimEp,  = dim E ~ dim A/p’.

Eliminating dimEp  and dimEp,  from these three equations, we obtain
dim A/p - dim A/p’ = 1, qed.

Corollary 3. Let A be a quotient of a Cohen-Macaulay ring, ami  let
p c p’ be two prime ideals  of A. Then all the  saturated  chains of prime
ideals joining p to p’ have the same length,  which is dim A/p - dim A/p’

We reduce to the case of a Cohen-Macaulay ring, which follows from
corollary 2.
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Corollary 4. Let A be a domain, which is a quotient of a Cohen-
Macaulay ring, and Jet p be a prime ideal of A We have

dim A = dim A,, + dim A/p.

This follows from corollary 3

R e m a r k . Corollaries 3 and 4 are interesting because of the fact that the
local rings of algebraic (and analytic) geometry are quotients of Cohen-
Macaulay rings - and in fact are quotients of regular rings, cf. part D.

4. Prime ideals and completion

Let a be the completion of A. If p is a prime ideal of A, the ideal
pi  is not in general prime in A. It may even happen that its primary
decomposition involves embedded prime ideals. We propose to show that
this unpleasant phenomenon does not occur when A is a Cohen-Macaulay
ring.

We first prove a general result:

Proposition 15. Let A and B be two noetherian  rings, B being an
A-algebra. Suppose that B is A-&&.  Let E be a finitely generated
A -module. Then:

Ass&E @A B)  = u AwdB/pB). (*I
PEASSA(E)

Let p  t Ass(E). We have an exact sequence 0 - A/p + E , whence,
since B is A-flat, an exact sequence 0 - B/pB + E 8~ B , and hence

Ass&B/pB)  c Asss(E  @A B ) .

Thus we have proved that the right side of the formula (*) is contained in
the left side.

For proving the reverse inclusion, let ~1:. ) pk  be the elements of
ASS(E)  , and let

E-@E,
be an embedding, where the A-modules E; ( i = 1,. i k ) are such that
Ass(E,)  = {pi},  cf. Chap. I, prop. 10. We have

Asw(E  @A  B) c u Assa(E,  @A B),

and we are  reduced to showing that ass,(E, @A  B) c AssB(B/piB)  I i.e.
we are  reduced to the cake where Ass(E) has only one element p
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Let us consider this case. By th. 1 of Chap. I, there is a composition
series of E which consists of modules of the type A/q,, where qa is a
prime ideal containing p Passing to E @a  B , we conclude that:

Asss(E  @a B)  c A~~B(B/PB)  u u ~sd~l%A,
(2

where the q,,  strictly contain p Let S = A - p ; the endomorphisms
defined by the elements of S are inject&  on E , and therefore also on
E @A  B since B is A-flat; thus p’ fl S = 0 for every p’ E  Ass(E @A  B)
Moreover; since qa  strictly contains p , we have (A/q,)s  = 0, hence
(B/q,B)s  = 0, and p’  n S # 0 for every p’ E  AssB(B/q,B).  Thus
Ass&E @a  B) n AssB(B/q,B)  = 0, which concludes the proof.

Theorem 7. Suppose that A is a Cohen-Macaulay  &al  ;ing,  and let p
be a prime ideal of A, Then every element p’ E  Ass~(AlpA)  is such that
dim A/p’  = dim A/p (the ideal pa  thus has no embedded component).

Let T = dim A - dimA/p  According to theorem 6, there exists a
subset of r elements ~1,.  , zr of a system of parameters of A such that
p E  Ass(E), where E = A/(x1,. , z,)A Moreover, according to theo-
rem 4, the module E is a Cohen-1Macaulay~module  of dimension dim A/p.
The same  is thus true for it!  completion E According to proposition !5,
(which is applicable since A is A-flat), we have Ass(A/pA) 5 Ass(E).
But, according to proposition 13 applied to E , every p’ E Ass(E) is such
that dim a/p’  = dim 2, whence the result.

C o r o l l a r y Let E be a finitely generated module over a Cohen-
Macaulay  local ring, and let n be an jnteger  2 0. If every p E  Ass(E)  is
such that  dim A/p = n , then the same  is true for every p’ E Ass(E)

This follows from th. 7, combined with prop. 15

R e m a r k . It would be even  more  pleasant if we had pA  = np’  , in the
notation of theorem 7. However, this  is false in general, even if A is regular
([Nag3],  p,  209, example 7). It is nevertheless true for the local rings of
algebraic geometry [Ch2],  and more generally for the “excellent” rings of
Grothendieck ([EGA], Chap. IV, $7.8); see also [Bow],  Chap. IX, $4,  th. 3.
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C: Homological Dimension and Noetherian
Modules

1. The homological dimension of a module

We  first recall some definitions from [CaE].  If A is a commutative ring
(no&her&  or not) and if M is an A-module (finitely generated or not),
one defines:

- the homological or  projective dimension of M as the supre-
mum (finite or infinite) projdim,M  of the integers p such that
Ext:(M,  N) #  0 for at least one A-module N,

- the inject&  dimension of M as the supremum inj dim, M of the
integers p such that Ext%(N,M)  #  0 for at least one A-module N ,

t h e  g l o b a l  h o m o l o g i c a l  d i m e n s i o n  o f  A as t h e  s u p r e m u m
globdimA  of the integers p such that Ext%(M,N) #  0 for at least
one pair of A -modules.

Saying that  projdim,(M)  = 0 (resp. injdimAM  = 0) is the same as
saying that M is projective (resp.  injecbive).

The following inequalities are direct consequences of the properties of
the bifunctor  (M, N) H Extz(M,  N) :

If the sequence 0 - M’  + M --t M” t 0 is exact, then:
i) proj dim, M 5  sup(proj  dim, M’, proj dim, M”) , and if the in-

equality is strict, we have proj dim, M” = proj dim, M’ + 1 ;
ii) inj dim, M 5  sup(inj dim, M’, inj dim, M”) , and if t,he  inequal-

ity is strict, we have inj dim, M’ = inj dim, M” + 1 ;
iii) proj dim, M” 5  sup(proj  dim, M: proj dim, M’ + 1) , and if the

inequality is strict, we have proj dim, M = proj dimA M’

Similarly, if 0 = MO  c M1  C c M, = M is a composition series
of M,

projdimA  M  5 s u p  p r o j  dim,(Mi,/Mi,l).
ISi<”

Proposition 16. For any A -module M , inj dim, M L the suprernum
of the integers p such that Extpa(N,  M) #  0 for at least one finitely
generated A -module  N

Indeed, let dM be this supremum. We obviously have the inequality
inj dim, M > dM and equality holds if dM = foe  Hence suppose that
dM is finite.

If dM = 0, Ext!.,(A/a,  M) = 0 for every ideal a of A and every
homomorphism of a into M extends to A ; whence M is injective  ([GE],
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Chap. I) and inj dim, M = dM  = 0
Suppose now that the result has been proved for dM < n and let us

show it for dM = n (n > 0). There exists an exact sequence

O+M+Q+NtO

where Q is an inject&  module and inj dim, M = inj dimA N+l We have
dM = dN + 1 , and inj dim, N = dN (induction hypothesis). Whence
dM = inj dimA M

Corollary (Auslander). globdim  A = supproj dim, M , where M
ranges over aU  finitely generated A -modules.

Indeed, if we let d(M, N) denote the supremum of the integers p such
that ExtP,(M,  N) #  0, we have the equalities:

globdimA  = E; d(M, N) = s;p(s;p  d(M, N))

= sup inj dim, N

= S;P (s;~  d(M’,  N)) = 5;~  (“;P d(M’,  N))

= sup proj dim, M’,
M’

where M and N range over all  A-modules,  and M’ ranges cwe~  all
finitely generated A-modules.

2. The noetherian case

From now on, we suppose again that A is a noetherian  ring and M is  a
finitely generated A -module.

Then proj dim, M is the suprernum of the integers p such that
ExtP,(M,  N) #  0 for at least one finitely generated A-module N ([GE],
Chap. VI;  proposition 2.5). Now every such N has a composition series

0 = N,, c c N, = N

such that NcINi-1  2 A/pi  , where pi is a prime ideal of A. It follows,
in the notation of the preceding section, that d(M,  N) 5 supi d(M, A/p,)
and that proj dimA M I sup, d(M, A/p) where p ranges over the prime
ideals of A. Proposition 2.1 of Chap. VI of [GE] can thus be restated as:

Proposition 17. Let n be an integer > 0. The following assertions
are equivalent:

a) projdimA  M 5 n.
b)  E&+‘(M,  A/p) = 0 for all  prime ideals p  of A.
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c)  For every exact sequence 0 + M,,  4 + M,,  + M - 0 such that
MO, , Mn-l  are  projective, M,,  is projective.

d)  There exists an exact sequence 0 + M, + - MO  - M - 0,
where the M, are projective, 0 5 i < n

Of course, the A-modules ExtP,(M,  N) and Torc(M,  N) are finitely
generated if M and N are; indeed, if M is finitely generated, there exists
an exact sequence:

M,+...+M1 + M,,  + M + 0,

where the M, (i 2  0) are finitely generated free modules; the mod-
ules ExtP,(M,  N) and Tort(M,N)  are thus quotients of submodules of
Homa(M,,  N) and Mp  @‘a  N , and these are obviously finitely generated.

Proposition 18. Let M and N be A modules with M finitely gen-
erated. If 4 : A --)  B is a homomorphism from A into B , and if B is
A -flat, then we have natural isomorphisms:

To&M,  N) @a  B = Tor,B(M  @‘a  B, N @‘a  B);

Ext;(M,  N) @a  B % Ext;(M  @A B,  N aa  B).

We give the proof for “Ext ” (note that the isomorphism  for “Tar  ”
holds without the finiteness hypothesis).

If, with the above notation, M  is the complex defined by (M),  = M,
a n d  d,  = &, M, 8~  B is B-free and the complex M  @?‘a  B gives a
projective resolution of M 8~ B Thus:

Ext;(M  @A  B, N @A B) N  fP’(Horn~(M@..,  B, N @‘a  B))
N W(Homa(M,N)  @A  B )

(because M,,  is a finitely generated free module).
But B being A -flat, we obviously have:

W’(Homa(&N)  @‘a B) %  H*(Homn(&,  N)) @a  B
= Ext;(M,  N) @a  B,

qed.

This proposition applies when B = A[X] , where X is an indetermi-
nate, when B = A is the completion of A for an m-adic  topology, or
when B = As where S is a multiplicatively  closed subset of A

Corollary 1. If (A, m) is a Zariskj  ring and M is a finitely generated
A -module given with the m -adic  filtration, we have:

proj dim, M = proj dimi  6f.
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Indeed, if Ext”(M,  N) #  0, Ext”(M,  N) is Hausdorff  and its com-
pletion Ext”(M,  G’) is nonzero; whence proj dimA A?  > proj dim, M

The reverse inequality follows from the more general property:

Proposition 19. Under the hypotheses of the above proposition,

proj dim,(B  @a  M) 5  projdimA  M.

Indeed, if 0 - M, + + MO + M 4 0 is a projective resolution
of M , the se&nce

O-M,~~B--~...~M~~~~B~M~AB~O

is a projective resolution of M @a  B

Corollary 2. One has

proj dim, M = sup proj dimAP  Mp  = sup proj dim,_  M,,,:
P m

where p  ranges over  the prime ideals of A and m over the maximal ideals.

Indeed, according to the above proposition, we have

proj dimAP  Mp 5  proj dim, M.

IvIoreover,  if ExtP,(M,  N) = P # 0, P,,, is different from 0 for at least
one maximal ideal m ; whence the assertion.

Corollary 2 reduces the study of the homological dimension to the case
of modules over a local ting.

3. The local case

Proposition 20. If A is a noetherian  local ring, m its maximal ideal,
k = A/m its residue field and if M is a finitely generated A -module, the
following properties are  equivalent:

a) M is free.
bj M is projective.
b) M is flat.
d)  Torl(M,k)  = 0,

The implications a) + b) =+  c) + d) are clear and it remains to show
that d) + a).

Thus suppose that Tq(M, k) = 0 and let ~1,.  , z, be elements of
M whose images in MfmM  form a k-basis. Let P be a free A-module
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with basis el, , e, and 4 the homomorphism from  P into M which
maps ei to z+.  By Nakayama’s  lemma, 4 is surjective. Let N be its
kernel. The exact sequence

O-N-P-M+0

gives rise to the exact sequence:

Tori  (P,  k) = 0 --t To11  (M, k) = 0 --t N/mN  + P/mP  % M/mM  + 0.

As $ is inject&,  N/mN  and hence N are therefore zero, qed.

Corollaly If A is a noetherian  ring and k is a finitely generated
A -module, M is projective if and only if for every maximal ideal m of
A, M, is a free A,,, -module.

This follows from the equality: proj  dim, M = sup, proj dimA_ Mm

Theorem 8. Let n be an integer > 0. Under the  hypotheses of the
preceding proposition, the following properties are  equivrtlent:

a] projdim*M  5 n.
b)  To&M,  N) = 0 for all p > n and for aU A -modules N
c) Tw;+~(M,~)  =  0 .

It is clear that a) + b) + c) Let us show that c) + a). To do so,
choose an exact sequence:

O-M,-%M,-1 +L.,. +M,,%M+O

where the modules MO, MI,. , M,_,  are free. Define

2, = KS&, O<i<n-1.

Then the sequence 0 + Z, - M, + Z,-, ---t 0 is exact and

ToI;(Zi,k)  = Torj+l(Z,ml,k) if j > 1.

It follows that:
Tor~(Mn,  k )  = Torz(Z,-2,  k )  =

= Tor,(Z,~,k)  = Tor,+l(M,  k) = 0:

hence M, is free and a) is t,rue.

Corollary 1. If M is a finitely generated module over  a noetherian
ring  A, the following properties are  equivalent:

a) projdimA  M < n.
b) To&M,  N) = 0 for all p > n and for all A -modules N
c) Tort++,(M,  A/m) = 0 for every maximal ideal m
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Thii follows from the theorem and the two preceding propositions.

Corollary 2. If A is a noetherian  ring, the following properties are
equivalent:

a) globdimA  5 n.
bi Td+:i, (A/m,  A/m) = 0 for every maximal ideal m.

It is trivial that a) + b) Conversely, if Tort+,,(A/m,  A/m) = 0,
then T~f+~(A/rn,  A/n) is zero  for every maximal ideal n (the annihi-
lator of Tort(M,  N) contains the annihilators of M and of N). Thus
proj dimA(A/m)  5 n and there exists a projective resolution

0 t L, 4.. i Lo  + A/m  --t 0.

But this implies that Tcx~+~(M,A/III)  = 0 for every M; whence a).

D: Regular Rings

Def in i t i on A regular ring is a no&he&n  ring of finite global homo-
logical dimension.

1. Properties and characterizations of regular local
rings

Let A be a regular local ring, n = glob dim A , m the maximal ideal of A ,
k = A/m and M a n~nzem  finitely generated A-module. The following
proposition compares proj dim, M and depth, M :

Proposition 21. proj dim, M + depth, M = n

The proposition is true if depth,M  = 0, for then there exists an
injection of k into M , and, as Tor, is left exact, an injection of Tor,(k,  k)
into Tor,(M,  k) :

0 + Tor,(k,  k) + Tor,(M,  k).

But Tor,(k,  k) is n~nzer~  (see corollary 2 to theorem 8) and so  is
Tor,(M,  k) , whence proj dim, M = n

Now suppose that the propaition  is proved for every  module whose
depth is strictly less than depth, M , and let us prove it for M
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It suffices to consider the case where depthA  M > 0, i.e. where there
exists a E m which is not a zeredivisor  in M We have an exact sequence:

O-M%M-MI+O,

where MI = M/aM,  and depth, Ml = depth, M - 1. Since
depth, Ml + proj dim, MI  = n by induction hypothesis, it remains to
prove that proj dim, MI  = proj dim, M + 1

But, in the homology sequence:

Tor,(M,  k) 2 Tor,(M,  k) + Torp(M1,  k) ----t
To+l(M,  k) 5 TOI,-l(M,  k),

a belongs  to the annihilator of k ; hence we  have.the  exact sequence:

0 + Tor,(M,k)  - Tor,(Ml,k)  + Tor,ml(M,k) + 0.

Since TOI,-l(M,  k) = 0 implies Tor,(M,  k) = 0, we have the equivalence:

Tor,(Ml,  k) = 0 Q Tor,ml(M, k) = 0,

qed.

C o r o l l a r y For proj dimA  M to be equal to n , it is necessary and
sufficient that m is associated to M

The following theorem (cf. [Se2])  hs ows  that our homological defini-
tion of regular rings coincide with the usual one.

Theorem 9. Let A be a noetherian  local ring of dimension r , with
maximal  ideal  m and residue fieJd  k = Afm The following properties are
equivalent:

a) A is regular.
b) m can be generated by T elements.
c)  The dimension over k of the vector space m/m’  is T
d) The graded ring gr,(A) , associated to the m  -adic filtration of A, is

isomorphic to the polynomial aJgebra  k[Xl,  ,X,1

The canonical map from m onto m/m2  gives a surjective  correspon-
dence between the minimal systems of generators of m and the k-bases of
m/m2  Hence b) ($ c) Moreover, it is clear that d) a c) Conversely,
b) + d) because if m is generated by r elements we have the inequalities:

1  < A’P,,,(A,n)  =  e,(A,r) < !(A/$ = 1 ,

whence e,(A, r)  = !(A/m)  and proposition 9 of Chap. II applies.
Let us show that d) + a) Let x = (zl,.  , z?) be a minimal

system of generators of m Property d) implies that x is an A -sequence
(this follows from th. 3 applied to the A-module A). In other words, the
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complex K(x,  A) gives a free resolution of k :

0 + Wx,  A) % % K&, A )  5 k  - 0 .

where K,,(x,A) % A and e is the canonical map from A onto k Thus
for every A -module M , we have the equality Tori(M,  k) ”  J&(x,  M)

In particular, Tor;(k,k)  = H,(x,k) = K;(x,k) = K,(x) @‘a  k,
whence To&k,  k) E+ /j”(k’) : Tor;+:,(k,  k) = 0, To&k,  k) = I;. Thus
glob dim A = T < fm, qed.

It remains to show that a) + c) : Let n = glob dim A. From

projdim,A  =  0  a n d  projdimAA  +depth,A =  n

we find depth,., A = n , and

n=depthAA  5 dimA=r.

Now the canonical map from K,(x,k) into Tori(k,k) is an injection,
where x = (zl,.  ,z.)  , s 2 T i denotes a minimal system of generators of
m , i.e. induces a basis of m/m2  (this is valid for every local ring A ; for a
proof see Appendix I); hence Tor,(k, k) # 0 and we have n > s Whence
the inequalities:

T < s < n = depth, A 5 dim A = T.

and the result.

Corollary 1. If A is regular, then dim A = globdimA

Indeed, the equality T = n has been proved along the way.

Corollary 2. Assume A is regular, and Jet x = (zl,. ,z,) be a
system of parameters generating m Let M be a finitely generated A
module.

i,l For i 2  0,  one  has natural isomorphisms

To&k,  M) 2 H&M)  ?x Ext;--i(k, M).

ii) Assume dim M = r Then M is Cohen-Macaulay  if and only  if it is
free.

We have seen that the Koszul  complex K(x) gives a free resolution
of k This implies i), (cf. also car.  2 and COT.  3 to prop. 3) and ii) follows
by applying prop. 21, together with the fact that T = n

Corollary 3. A regular local  ring is normal, and Cohen-MacauJay

If A is regular, it is Cohen-Macaulay by COT.  2, applied to M = A ;
it is normal, because gr,(A)  is normal, cf. Chap. II, part A, 54.
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Corollary 4 (Auslander-Buchsbaum,  [AuB3]). A regular local ring
is factorial.

This is a general property of normal domains in which every ideal has
a finite free resolution (cf. [Bow],  Chap. VII, 54,  p.  68).

Corollary 5. A noetherian  local ring of dimension 0 (resp.  1) is regular
if and only if it is a field  (resp.  a discrete valuation ring).

This is clear.

Corollary 6. Assume A is regular of dimension 2. Let M be a finitely
generated A -module. The following properties are equivalent:
(i) M is free.

(ii) There exists a finitely generated module N such that M is isomorphic
to Hom(N,  A )

(iii) M is reflexive, i.e. the canonical map M + Hom(Hom(M,  A); A)
is an isomorphism.

The implications (i) + (iii) + (“)11 are clear. Let us  show (ii) + (i)
Choose N as in (ii), and write it as L/R where L is free and finitely
generated. We have an exact sequence

O+M+L’+X+O,

where L’ = Hom(L;A) and X is the image of L’ in R’  = Hom(R,A)
Since L’ is free, we have depth, L’ = 2. On the other hand, neither M
nor X contain a submodule isomorphic to k Hence we have

depth,  M 2  1 and depth, X > 1.

Proposition 8 shows that depth, M #  1. Hence depth, M 2  2 and M
is a Cohen-Macaulay module, hence is free by corollary 2 above.

(This applies in particular when A is the Iwasawa  algebra Z,[[T]]  ,)

2. Permanence properties of regular local rings

If A is a regular local ring, a regular system of parameters of A
is  defined as  any system x = {xl,.  , z,} of parameters of A which
generates the maximal ideal m We already know that every system of
parameters of A is an A-sequence. Among such systems, the regular
systems are characterized by:
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Proposition 22. If {XI,.  , xp} are  p elements  of the maximal  ideal
m of EI  regular local  ring A, the following three properties are equivalent:

a) ~1,.  , zP  is a subset of a regular system of parameters of A
b)  The images of x1,. , zp  in m/m2  are linearly independent 0”~ k
c)  The local ring A/(x1,  , xp)  is regular, and has dimension dim A-p

(In particular, (~1,.  ,zp)  is a prime ideal.)

a) e b) : Indeed the regular systems of parameters of A correspond
to k-bases of  m/m2

a), b) + c) : Indeed we have an exact sequence:

Oip/pIln?-m/m2+n/nz+0

where p = (~1;. , z~) and n = m/p and hence the equivalences:

b )  Q [p/pnm’:k]  =  p e [n/n*:k]  = dimA-p.

But x1,. ,zp form a subset of a system of parameters of A, so
A/(x1,  , zP) has dimension dim A - p ; whence the result.

c) + b) : Indeed, c) is equivalent to the two conditions:

[n/n*  :  k]  = dimA/p  a n d dim A/p = dim A - p.

C o r o l l a r y If p  is an ideal of a reguJar local  ring A ? the following two
properties are  equivalent:

a) A/p is a regular local ring.
b) p is generated by a subset of a regular system of parameters of A

Only the implication a) + b) remains to be proved. But if n = m/p,
we have the exact sequence:

0 - p/p n In=  - m/m2  + nJn2  + 0,

and since [n/n’ : k] = dim A/p i we have [p/p n m2 : k] = hta  p
Thus if ~1,.  , zp are elements of p whose images in m/m* form a

k-basis of p/p n m2 i then the ideal (~1,.  ,zp)  is prime and of height
p = htn  p ; whence p = (21:.  , zP) , qed.

Proposition 23. If p is a prime ideal of a regular ring A 1 then the
local  ring A, is regular.

Indeed, i t  follows from the properties proved in part C that
glob dim A, 5 glob dim A < 03
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Proposition 24. If a is the completion of the local  ring A for the
m -adic  topology, we have  the equivalences:

A regular a A regular.

Indeed, gr(A) = gr(a)

This last characterization of regular local rings is very useful, because
of the following theorem:

Theorem 10. If A is a complete local  ring, and if A and k = A/m
have the same  characteristic, the following properties are equivalent:

a) A is regular of dimension n
b) A is isomorphic to the formal power series ring k[[Xl,  :X,1]

The implication b) + a) follows from theorem 9.
Conversely, a) + b) : We use the well-known fact that every complete

local ring A , with the same characteristic as its residue field k , contains
a field k’ mapping isomorphically onto k (Cohen, [Co]). For every reg-
ular system (21,.  ,z,,} of parameters of A, there thus exists a unique
homomorphism I++  from k’[Xl,.  ,X,1  into A which maps X;  to  xi.
Since A is complete, ~4  extends to k’[[X1,. ,X,1]  Since A is regular,
the map

g*(b)  : g*(k’[[X~,  ,&ll)  + g * ( A )
is an isomorphism; hence the same is true for 4, cf. Chap. II, prop. 6.

Remark. For a proof of Cohen’s theorem, see [C&h], expo&  17:
and also [Bour],  Chap. IX, 53.

3. Delocalization

It follows from the above that the regular tings are the rings of finite
dimension such that for every maximal ideal m , A,,, is a regular local
ting, and for these rings the dimension coincide with the global homological
dimension:

dimA = globdimA, if A is regular.
Fields and Dedekind domains are  the simplest examples of such rings.

Apart from these, we have the rings of polynomials according to:
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Proposition 25. If A is a regular ring and A[X] the ring of polyne
mials  in X with coefficients in A, then A[X] is regular and

glob dim A[X] = glob dim A + 1.

We first verify the inequality: glob dim A[X] 5  glob dim A + 1 This
is a consequence of:

Lemma 1. If M is an A[X] -module, then

proj  dim,[,](M)  2 proj dim, M + 1.

Let us consider first the case where M = A[X] 8~  N i N being
an A-module (we write A4 = N[X]  ): since A[X] is A-flat, we have
proj dim,Ixl  N[X] < proj dim, N , cf. prop. 19. Moreover, it is clew that
proj dim, N = proj dim, M

Now if M is an arbitrary A[X] -module, it is also an A-module, and
we will let MIX]  denote the A[X] -module defined by the A-module M

We have an exact sequence (cf. Bourbaki, Alg&bre  VII, 55.1):

0 + M[X] 2 M[X] 5 M + 0,

where

$qCX”@ami)  = CXGni,

and 9+!( c X” @,.j  rni)  = c xi+’ @‘a m< - c X” @a  xm<.
1

Whence

proj dimAlxl  M 5  sup (proj dim,lxl  M[X],  proj dim,jxl  M[X]  + 1)

= sup (proj dim, M, proj dim, M + 1)

= projdim*M+l,

qed.

Finally. let us show that glob dim A[X] 2 glob dim A + 1 : Indeed, if
m is an ideal of A such that hta  m = dim A = globdim  A, we  have

globdimA[X]  =  d i m A [ X ]  2  htA[xl(m[X],X)

2  hjxj m[Xl  + 1

2  htAm+l.
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Corol lary If k is a field, k[X,,  ,X,]  is regular.

Since every affine algebra is a quotient of a polynomial ring, we thus
recover the properties of chains of prime ideals in affine algebras.

R e m a r k . Let A = k[X1,.  ,Xn]/a  where a is an ideal of the polyno-
mial ring k[Xl,  , Xn]  Let X be the corresponding affine variety. One
says that X is non-singular if A is regular in the sense  defined a,bove.
When  k is perfect, the following are equivalent (cf. e.g. [Bour],  Chap. X;

§7):
- X is non-singular;
- X is smooth over k ;
- k’  gk A is regular for every extension k’  of k

4. A criterion for normality

Theorem 11. Let A be a noetherian local ring. For A to be normal,
it is necessary and sufficient that it satisfies the following two conditions:

(i) For every prime  ideal p of A, such that  ht(p) 5  1, the local ring
A, is regular (i.e. a field or a discrete valuation ring, according to
ht(p) = 0 or 1).

(ii) If ht(p) > 2, we have depth(Ap) 2  2.

Suppose A is normal, and let p be a prime ideal of A. If ht(p) 5  1 ,
A, is regular (cf. Chap. III, prop. 9). If ht(p) 2  2, let z be a nonzero
element of pA P ; then (lot. cit.) every essential prime ideal of zA,  in
A,, is of height 1; thus none of them is equal to PA,,  which shows that
depth(Ap)  2  2 .

Conversely, suppose that A satisfies (i) and (ii), If we already know
that A is a domain, prop. 9 of Chap. III shows that A is normal. In
the general case, one first proves that A is reduced (i.e. without nonzero
nilpotent elements), and then that it is equal to its integral closure in its
botal  ring of fractions. For the details: see  [EGA], Chap. IV: th. 5.8.6,  or
[Bow],  Chap. X, p. ‘21, Rem. 1.

5. Regularity in ring extensions
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In this section, A is a noetherian local ring, with residue field k , and B is
a noetherian local ring containing A and such that m(A) c m(B) (Note
that this condition is satisfied when B is a finitely generated A module,
thanks to Nakayama’s  lemma.)

Theorem 12. If B is regular, and A -Aat,  then A is regular.

By prop. 18, we have

B@A  To&k,  k) = Tor:(E  @  k,B 8 k) for all  i

Since B is regular, these modules are 0 for i > dim B This implies that
the same  is true for To$(k,  k) , because of the following lemma:

Lemma 2. If M  is a finitely generated A -module,  then:

B@‘.lM=O  ==a  M=O.

Indeed, if A4 were #  0, it would have a quotient which is isomorphic
to k = A/m(A) and we would have B @a  k = 0, contradicting the fact
that m(A) is contained in m(B),

Hence Torf  (k. k) = 0 for large i , which shows that A is regular.

Theorem 13. Assume B is finitely generated as an A -module.
(a) If A is regular, then: B is A -free H B is Cohen-Macaulay
(b)  If B is regular, then:  B is A-free w A is regular.

Assume A is regular. By prop. 12, B is a Cohen-Macaulay ring if
and only if depth, B = dim A, i.e. if and only if E is a Cohen-Macaulay
A-module. By part ii) of car. 2 to th. 9, this means that B is A-free.
This proves (a) and half of (b). The other half of (b) follows from th. 12.
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Appendix I: Minimal Resolutions

In what follows, we let A denote a noetherian local ring, with maximal
ideal m , and residue field k Every A -moduleis  assumed to be finitely
generated. If M is such a module, we write A4 for the k-vector space
MImM

1. Definition of minimal resolutions

Let L, M be two A-modules, L being free, and let u : L + M be a
homomorphism. Then u is called minimal if it satisfies the following two
conditions:

a) u is surjective.
b) Ker(u)  c mL.

It amounts to the same (Nakayama’s  lemma) to say that ‘ii  : z + a
is bijective.

If M is given, one constructs a minimal u : L ---t  M by taking a
basis (&)  of the k-vector space a = M/mM  ! and lifting it to (ei) , with
QEM.

Now let
+ Li  5 5 L1% Lo  5 M + 0

be a &ee  resolution L.  of M Set:

N,  = Im(L;  ---f Li_1)  = Ker(L,-l  t Li-2).

Then L. is called a minimal free resolution of M if Li - N,  is
minimal for every i 2 1, and e : Lo  ---t  M is minimal as  well.

Proposition 1.
(a) Every A -module M has a minimal free resolution.
(b) For a free resolution L. of M to be minimal, it is necessary and- -
sufficient that the maps d : Li  + Z,-l are  zero.

(a): Choose a minimal homomorphism e : Lo  ---*  M, If A’1 is its
kernel, choose a minimal homomorphism L1  + N1  , etc.

(b): Since L. is a resolution, the homomorphisms
d: L;tN;  and e: L,,-  M

are surjective. For these to be minimal, it is necessary and sufficient that
their kernels N,+,  (rap.  Nl  ) are conta+d  i” mLi  (resp.  in mLo  ),
which means that the boundary operator d on L. is zero.
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C o r o l l a r y If L. = (Lc)  is B minim&  free resolution of M, the rank
of Li  is equal to the dimension of the k-vector space Torf(M,  k)

Indeed, we have:

To&M,  k) ” H,(L.  @  k) = I&@.)  ” Zi

Remark. In particular, the rank of Li  is independent of the chosen
resolution L..  In fact, it is easy to prove more: any two minimal free
resolutions of M are isomorphic (non-canonically in general). See e.g.
[Eil], or [Eis], 519.1.

2. Application

Let L. = (L<)  be a minimal free resolution of M, and let K. = (KS)
be a free complex,  given with an augmentation KO  + M We make  the
following hypotheses:

(CO  ) f10  + 73 is injective.
(Ci  ) the boundary operator d, : Ki  + K;+I maps K;  into mK;_l

and the corresponding map di : K/mK,  + mK;_l/m2K,_1  is
injective.

Since L. is a free resolution of M , the identity map M + M can
be extended to a homomorphism of complexes

f:K.+L.

Proposition 2. The map f is injective, and identifies K. with a direct
factor of L. (as A-modules).

We need to show that the fi : KS + Li  are left-invertible. But, we
have the following lemma (whose proof is easy):

Lemma Let L and L’  be two free A -modules, and let g : L + L’
be a homomorphism. For g to be let%invertible  (rep.  right-invertible), it
is  necessary and sufficient that 3 : z + Z’ is injective (resp.  surjective).

We thus need to prove that the fi : ??i + zi are injective. We
proceed by induction on i :
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a) i = 0. We use the commutative diagram

x0 - G
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is then expressed in the following manner:
j=s

d(y)  = c “j(~ L $1.
j=1

The symbol L denotes the tight  interior product (cf. Bourbaki, AJg&breIII,
511). We need to write 2 explicitly; for that, we identify ??;  with A”  z
and n~K;-~/rn*K~-1  with m/m2  @  r\i-lz. Then the formula giving 2
becomes:

j=a
CT(g)  = CZj(?jLiq,

j=l

with obvious notation. Since the Zj  form a basis of m/n?  i the equation
&) = 0 is equivalent to g L ZT  = 0 for every j i whence g = 0, qed.

1 1
xz id XT.

The fact that ??,J + z is injective implies that zip,  + & is injective.

b) i 2  1 We use the commutative diagram

77; d z.z

1 1
~IIK;-&~K,-I  - mLi-,/m=Li-l.

Since fiml : Kiel  ---t  L;-l  is left-invertible, so is the map

j;-l : n~K~-~/rn~K,-~  + mL;-l/m2L;-l;

by the condition ( C, ), we conclude that the “diagonal” of the square above
is an injective map, whence the injectivity of ??i  + z;i

C o r o l l a r y The canonical map H,(K.  8 k) + Tor:‘(M,  k) is injective
for every i > 0.

I n d e e d ,  H;(K.  @  k )  = H,(R.)  = K, and-To&&k)  = E< ; t h e
corollary just reformulates the injectivity of the ji

3. The case of the Koszul complex

From now on, we let M = k , the residue field of A.

Proposition 3. Let x = (XI,.  ,x,)  be a minimal  system ofgenerators
of m , and let  K. = K(x,  A) be the corresponding Koszul complex. The
complex K. (given with the natural augmentation K.  4 k) satisfies the
conditions (Co  ) and ( C, ) of $2.

We have K,,  = A and t,he  map 2 - k is bijective. The condition
( CO  ) is thus satisfied It remains to check ( G ).

Set L = As ; let (Q,  ,e,)  be the canonical basis of L and
(e;,  , e:)  be the dual basis. We can identify K, with A”  L ; the bound-
ary map

d:l\‘L+t-‘L

T h e o r e m We have  dimk  Torf(k,  k) 2
0

1 , with s = dimk  m/m*

Indeed, prop. 3, together with the corollary to prop. 2, shows that the
canonical map from H,(K.  @  k) = fT, t,o Tor$(k,  k) is injective, and we

h a v e  dimk??;  =  %
0

Complements. There are in fact much more precise results (cf. the
papers of Assmus [As], Scheja  [SC], Tate [T] quoted in the bibliography):

Tori(k,  k) has a product (the product m of [GE])  which makes it a
(skew) commutative, associative k-algebra with a unit, element; the squares
of elements of odd degree are zero. The isomorphism  m/m2  + Tor;‘(k,  k)
extends to a homomorphism of algebras 4 : A m/m2  + Tor:‘(k,  k) which
is injective [T]; we thus recover the theorem above. The ring A is regular
if and only if 4 is bijective (it is even enough, according to Tate,  that the
component of 4 of some degree > 2 is bijective). Moreover, Torf(k,  k)
has a cwproduct  [As] which makes it a “Hopf  algebra”. One can thus
apply the structure theorems of Hopf-Bore1  to it; this gives another proof
of the injectivity of 4. One also obtains information on the Poincar&  series
PA(T)  o f  Tor;(k,k):

P a ( T )  =  c aiT”, where ai = dimk  Tor$(k,  k)
i=o

For example ([T], [As]), A is a “complete intersection” if and only if
Pa(T) is of the form (1 + T)“/(l  - Z’*)d,  with n,  d E  N ; for other analo-
gous  results, see [SC]. In all such cases, Pa(T) turns  out to be a rational
function of T In the original version of the Notes, it was asked whether
this is always true: “On ignore si PA(T) est  toujours  une fonction ra-
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tionnelle”. This question, which some people misread as a conjecture, was
solved negatively in 1982 by D. J. Anick  ([Anl,Z]), together with the anal-
ogous question for loop spaces of simply connected finite complexes.

Appendix II: Positivity of Higher
Euler-Poincarh  Characteristics

We choose the framework of abelian  categories. More  precisely, let C be
an abelian  category given with n morphisms  zlr  , 5,  from the identity
functor  into itself. This means that every E E C is given with endomor-
phisms zl(E),  , z,(E)  , and that, for every f E Homc(E,  E’) , we have
q(E’)  o f = f o q(E)  In particular, the q(E)  belong to the center of
Endc(E)  , and they commute with each other.

If J c I = [l,n] , the subcategory of C which consists of objects E
such that z<(E) = 0 for i E J is written as CJ We have Ca  = C ; besides
this case,  we will have to consider J = I and J = [2:  n]

If E is an object in C , the Koszul  complex K(x;  E) is defined in an
obvious way; its homology groups H,(x,  E) are objects of C , annihilated
by each zi ; in other words, they are elements of CI

We now consider the higher Euler-Poincar6  charactetistics  formed
by means of the H,(x,E)  First recall how one attaches (according
to Grothendieck) a group K(Z)) to every abelian  category ‘D. One
first forms the free group L(‘D)  generated by the elements of DD;  if
0 + E’ + E + E”  ---t  0 is an exact sequence in 2))  one associates
to it the element E - E’ - E” of L(D) ; the group K(D) is the quotient
of L(D) by the subgroup generated by t,hese  elements (for every exact
sequence). If E E 23, its image in K(2)) is written as [E] ; the elements
of K(D) so obtained are called positive; they generate K(Z))  ; the sum of
two positive elements is a positive element.

This applies to the categories CJ In particular, let E E C I we have
H;(x,  E) E Cr , and the alternating sum:

xib,E)  = [K(x,E)]  - [fG+~(x,E)l  + ( i = 0, 1, )

makes sense in the group K(C1). We can thus ask whether this character-
istic xi is 2 0 (in the sense defined above). We  shall see that it is indeed
the case if C has the following property:

(N) Every E E C is noetherian,  i.e. satisfies the ascending chain
condition for subobjects.

In other words.

T h e o r e m If C has  property (N); we have x<(x,E)  2 0 for every
E E C and every i > 0.

We prove this by induction on n

a) The case n = 1
For simplicity. we write z instead of z1 We have

H&, E )  =  Cokerz(E)  a n d  Hl(z,E)  =  Kerz(E).

The positivity of xi(z,  E) is clear for i > 0. When i = 0, we have to
show that

xo(z,  E) = poker+)]  ~ [K~K~(E)]
is a positive element of K(C1)  For m = 1,2,. , let xm be the m-th
power of z(E), and let N, be the kernel of z”’ ; the N, increase with
m. According to (N), the N, stabilize; let, N be their limit, and let
F = E/N.  We  have an exact sequence

O-NiE-FiO.

The additivity of ~0  implies xo(s, E) = xo(z, N) + xo(s, F) Since
Ker z(F)  = 0 i x0(x,  F) is equal t,o  [&(z,  F)] , hence is 2 0. On the other
hand, z(N) is nilpot,ent;  this shows that N has a composition series whose
successive quotients Qa are annihilated by z We have x0(x,  Q,) = 0
for every a, hence x&z, N) = C xo(z, &a) = 0, and we get

x&E) = x&F) 2 0.

b) Passing from n- 1 to n
According to prop. 1 of pat A, we have an exact sequence:

0 + H&a,K(x’,E))  + K(x,E)  + H~h,ff-~(x’,E))  + 0,

writing x’ for the sequence (22,.  ,z,,)
Passing to K(Cr) ) we can thus write:

[Wx,E)l  = [wzI,H:)l  + ~ff1(~1,ff-,)l:
where H, = i&(x’,  E) Hence:

xi(x>E)  = [fh(n,ff-,)l

+ c (-lYm%h,~:+,)l  - ~~Ih,fG,,)l)
rn>O

Let J = [z,n]  The Hi belong to CJ By the induction hypothesis, the
element x: of K(CJ) defined by

x:  = c (-lYPx+,l
rn>o
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is 2 0, i.e. equal to [Gil for sxne object Gi of CJ Since ~0  is additive,
we have

xoh,G)  = c (-l)“‘xohr~:+m) i n  K(CJ).
mg

xi(x,E)  =  [fh(z~,H:e,)l  + xoh,G)
Since xo(zl,G;)  2  0 by a), we have xi(x,E) 2  0, qed.

Example. Let A be a noetherian local ring, let ~1,  , z, be a system
of parameters of A, and let C be the category .of  finitely generated A-
modules (with the endomorphisms defined by the zi ). The category Cr
is the category of A -modules annihilated by the z; ; the length defines
an isomorphism from K(C.1)  onto Z , compatible with the order relations.
The above theorem thus gives:

C o r o l l a r y If E is a finitely generated A -module  and i is 2 0, the
integer

xi(E)  = &%(x,  E)) - +%+I(x, El)  +
i s  20.

R e m a r k . In the case of the above example, one can prove that

xi(E) = 0 implies H3(x,E)  = 0 for j 2 i 2  1

However, the only proof of this fact that I know of is somewhat involved
(it consists of reducing to the case where A is a ring of formal power series
over a discrete valuation ring or over a field). I do not know if there exists
an analogous statement in the framework of abelian  categories.

EXeXiS?S.
1) Assume that C has property (N). Recall that an object of C is

simple if it is # 0 and it has no nonzero  proper subobject.
a) Show that every nonzero  object of C has a simple quotient.
b) (Nakayama’s lemma) Show the equivalence of the followng three

properties of C :
(i) E is simple ==+ s,(E) = 0 for i = 1,. , n

(ii) Coker(zi(E)) = 0 for some i ==+ E = 0
(iii) Ho(x,E)  = 0 + E = 0

2) Let x1,. , z, be elements of a commutative noetherian ring A,
and let B be an A-algebra. Let C be the category of left B-modules
E which are finitely generated as A-modules (the endomorphisms zi(E)
being those given by the 5; ). Show that C has property (N), and that it

Appendix III: Graded-polynomial Algebras 91

has properties (i),(ii),(iii)  of exert.  1 if the zi belong to the radical of A.
(Note that this applies in particular when B is the group algebra A[G]  of
a group G .)

Appendix III: Graded-polynomial Algebras

All the results proved for local rings have analogues for graded algebras
over  a field. These analagues  can be proved directly, or can be deduced
from the local statements. We follow the second method.

1. Notation

We consider finitely generated commutative graded algebras over a field k :

A = @Am with AO=k,
n>o

together with graded A -modules M = @ Mn  such that A{-,  = 0 for all
sufficiently large n

We put m = m(A) = @?>I A, ; it is a maximal ideal of A, with

A/m = k. The completion A, of the local ring A, can be identified
with the algebra of formal infinite sums:

a0  + al  + t a, + , with a, l A, for every n

One has the following analogue of Nakayama’s  lemma:

Lemma 1 . If M = mM  , then M = 0

Indeed, if M #  0, choose n minimal such that M,, # 0, and note
that A&,  is not contained in mM.

Lemma 2. If f : M + M’  is a homomorphism of graded modules, and
jf M/mM  + M’/mM’  is surjective,  then f is surjective.

This follows from lemma 1; applied to Ml/f(M)

A graded A -module M is called graded-free if it has a basis made
up of homogeneous elements. If one denotes by A(d) a free A-module
with basis  a homogeneous element of degree d , M is graded-free if and
only if it is isomorphic to a direct sum of A(d,)  ‘6.
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Lemma 3. The following properties are equivalent:
(i) M is graded-free.

(ii) M if A -fJat  (as a non-graded module).
(iii) Tor;‘(M,  k) = 0

It is clear that (i) a (ii) + (iii). To prove (iii) a (i) , choose a
k-basis (5,) of homogeneous elements of MjmM  Put d, = deg(Z,)
and select a representative z, of Za in Md, Let L be the direct sum of
the free modules A(d,) The Z, ‘S  define a homomorphism j : L - M ,
which is surjective by lemma 2. Put N = Ker(f)  We have an exact
Sl3~ll~IlCfX

To&M,  k) --) hrjmN  + L/mL  + M/mM  --f 0.

By construction, L/mL  + M/mM  is an isomorphism, and by (iii) we have
Tor;‘(M,  k) = 0. Hence N/mN = 0, which implies N = 0 by lemma 1.
Hence M is isomorphic to the graded-free module N , qed.
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3. A characterization of graded-polynomial algebras

2. Graded-polynomial algebras (cf. [LIE], Chap. V, 55,  and
[Bow],  Chap. VIII, 56)

We say that A is a graded-polynomial algebra (in French: “alghbre
grad& de polyn6mes”)  if there exist homogeneous elements PI,  , Pd
of A, such that t,he  natural map

Wl,...  ,&I  -A

defined by the P, ‘8, is an &morphism.  If this is the case, the monomials

pp’ p”dd with c ai deg(P,) = n

make up a basis of A, The Poinca&  series of A,

is equal to

I& with a; = deg(P,)

This shows that the sequence (ai) is independent of the choice of the
P,‘s (if numbered so that al 5 a~  < < ad).  The ai are  called the
basic degrees of A. Note that A is isomorphic to the symmetric algebra
Sym(L)  , where L is the graded-free A-module L = @A(ai)

Let A = $n>o A, be a graded algebra satisfying the conditions of $1

Theorem 1. The following properties are equivalent:
(1) A is a graded-polynomial  algebra.
(2) A is isomorphic (as a non-graded algebra) to a polynomial algebra.
(3) A is a regular ring.
(4) The local ring A, is regular.

It is clear that (1) + (2) a (3) + (4), Let us show (4) + (1).
First note that m/m2  is a graded k-vector space of finite dimension. Let
(PI,.  ,pd)  be a basis of m/m2  made up of homogeneous elements; let
ai = deg(pi) and choose a representative P, of pi in A,;  Let A’ be
the graded-polynomial algebra k[Xl,  , Xd]  , with deg(X;)  = a; , and let
j : A’ + A be the unique morphism such that j(X,)  = Pi  for every i
One sees easily (by induction on n) that f(AL)  = A, for every n i i.e.
that j is surjective. The local map j : &, -t a, (where m’ = m(A’)  )
is surjective, and, since A,,, is regular, it is an isomorphism (use th. 10 of
part D 52,  for instance (*I  ). This implies that j is injective.  Hence j is
an isomorphism, qed.

Remark. Another property equivalent to (l), ,(4)  is:
(5) dim(A) = dimk(m/m2).

4. Ring extensions

Let B = !&>0 B,  be a commutative graded k-algebra containing A,
and such that -&, = k

Theorem 2. Assume that B is a graded-polynomial algebra.
(a) If B is a graded-free A -module,  A is a graded-polynomial algebra.
(b) Conversely, if A is a graded-polynomial algebra, and if B is a finitely

generated A -module,  then B is a graded-free A -module.

In case (a), the local ring Em(~)  is regular, and is a flat A, module.
By th. 12 of part D 55,  this implies that A,,, is regular; hence A is a
graded-polynomial algebra, cf. t,h.  1.

(*)  Alternative argument: if Ker(jj were # 0, we  would have the inequal-
ity dim.&  < dim&,,  , but it is clear  that both dimensions are equal to
dimk(m/m’)
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A similar argument shows that (b) follows from th. 13 of part D $5,
combined with lemma 3.

R e m a r k . In case (b), the A-module i? has a basis (b,) made up
of  homogeneous elements. Put e, = deg(b,)  Since B = @,  Ab, , the
Poincarb  series q+~(t)  of B is given by

If one writes #a(t)  and 4~(t)  as:

with d=dimA=dimB,onehas

(4.2) (p-)f(ld) = ~(1~P).
n i=l i=l

Dividing both sides by (1 - t)d , and putting t = 1 gives:

(4-3) [B : A] n bi = fl ai,

where [B : A] is the rank of the free A -module B , i.e. the number of
elements of the basis (b,)

Example . Take B = k[Xl, , Xd]  with the standard grading:
de&X;)  = 1 for 1 5  i 5  d. Choose for A the subalgebra of the symme?-
ric  polynomials. We have A = k[P,,  , Pd],  where PI,.  , Pd  are the
elementary symmetric polynomials:

Pl=X1+‘..+X&  ,Pd=xl...xd.

This shows that A is a graded-polynomial algebra with basic degrees
1,2,.  ,d.  By th. 2, B is a graded-free A-module. Indeed: one can
check that the monomials

x;“‘...,ydd  1 with 0 5  rni  < i ,

make up an A-basis of B The identity (4.2) above becomes:

(1 -&(1+  tt  .., + F’) = (1 -t)(l - P)..‘(l  -P)
i=l
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5. Application: the Shephard-Todd theorem

95

We are going to apply th. 2 to the proof of a theorem of Shephard-Todd
([ST]) which is very useful in Lie group theory.

Let V be a k-vector space of finite dimension d, and W a finite
subgroup of GL(V) such that
(a) the order IWI  of W is prime to  the characteristic of k ,
(b) W is generated by pseudereflections.

(A pseudo-reflection s of V is an automorphism of V such that
Ker(s  - 1) is a hyperplane of I/.  Such an automorphism can be written
as z H z + u(z)u  , where u E  V - {0} , and u is a non-zero linear form
o n  V.)

Let B = Sym  V be the symmetric algebra of V , with the standard
grading; it is a graded-polynomial algebra, isomorphic to k[Xl,  , Xd]
The group W acts on B. Let A = BW be the subalgebra of B made
up of the elements iixed  by W.

Theorem 3 ([ST], see also [Ch3]).
polynomial algebra.

The algebra A is a graded-

It is easy to see that B is a finitely generated A -module (e.g. because
it is integral over  A, and generated as an A-algebra by a finite number
of elements). By th. 13, it will be enough to prove that it is a graded-free
A -module. By lemma 3, this  amounts to proving that the k-vector space
E = Torf(B,  k) is 0.

Note that E is a B-module, and that W act,s  on E

Lemma 4 .
(i) We have EW = 0.

(ii) The group W acts trivially on E’ = E/m(B)E

Assume Lemma 4. Since IW1  is prime to the characteristic of k : the
surjective  map E + E’ gives a surjection  EW  4 Efw By (i) we have
EW  = 0. Hence Ew = 0 and by (ii) we have E’ = 0, hence E = 0 by
Nakayama’s  lemma applied to the B-module E

Proof of part  (i) of Lemma 4
Since the order of W is invertible in A, we have

To&M,  k) UJ = Torf(MW,k)

for every A-module M with an A-linear &ion  of W (e.g.  use the
projector & CwEW  ‘w ).
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By taking M = B , and i = 1, this gives

EW = To&B,k) w =  T0ri+3~,k)  =  To&A,k)  = 0 .

Proof of part  (ii) of Lemma 4
Let s : z H z + u(z)v  be a pseudweflection  belonging to W The

action of s on  B is trivial modulo the ideal uB. (Note that  21 i s  an
element of B1 .) Hence we may factor s - 1 on B as:

BABBB>

where X is A-linear, and /I  is multiplication by u This gives an analc-
gous  factorization of the endomorphism  (s - 1)~ induced on E by s - 1,
*Xdy

E++E%E,

where 1~  is multiplication by v In particular, the image of (s - l)E is
contained in WE,  hence in m(B)E  This shows that the pseudo-reflections
belonging to W act trivially on E’ = E/m(B)E Since W is generated
by pseudo-reflections, this proves (ii).

R e m a r k . There is a converse to th. 4: if B”” is a graded-polynomial
algebra, then W is generated by pseudereflections  (see [ST], and also
Bourbaki, [LIE], Chap. V, 55,  no. 5).

Exercises (cf. [LIE], Chap. V).
L e t  B,  A  beasinth.3,andcalla;  (i=l,...:d)thebasicdegrees

of A. Assume char(k) = 0.

Let C = B @a  k = B/m(A)B  It is a graded k-vector space, with
an action of W.  Let 2u  E  W; if n 2  0, denote by xn(w)  the trace of 2u
acting on the n-th component of C

1) Show that Cc&A  is isomorphic to B as a graded A[W] -module.
Deduce that the linear representation of W on C is isomorphic to the
regular representation of W

2) Prove that IWi = [B : A] = dimk C = n:‘=,  ai

3 )  Show  that  $a@) c xn(mY  =  det(llp  tw) for 2~1 E  W,  where
“20
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5) Use 3) and 4) to prove:

‘+‘@)  = & wFw det(ll-  tw)’

6) Show that det(t-w)  divides the polynomial Pa(t)  = fi (t”*  - 1)
i=l

for every w E  W , and that Pa(t) = Fe; det(t  ~ w)

7) Let V’ be a subspace  of V and let W’ be a finite subgroup of
GL(V’)  generated by pseud*retlections.  Assume that every element of
W’ is the restriction of some element of W Let a: be the basic degrees
o f  W’.

Show, by using 6), that the polynomial n  (t”: 1) divides the
J

polynomial n  (t”j  - 1) In particular, every ai divides some ai



Chapter V. Multiplicities

A: Multiplicity of a Module

In thii section, A is a commutative noetherian  ring; all A-modules are
assumed to be finitely generated.

1. The group of cycles of a ring

An element of the free abelian  group Z(A) generated by the elements of
Spec(A)  is called a cycle of A (or of Spec(A)).  A cycle 2 is positive
if it is of the form

z = c 4P)P with n(p) 2 0 for every p E Spec(A)

Let us assume  now that A is  local, of dimension n. If p 2 0, let
Z,,(A) be the subgroup of Z(A) generated by the prime ideals p with
dim A/p = p The group Z(A) is the direct sum of its subgroups Z,(A) ,
for Olp<n.

The cycles are related to A -modules in the following way: Let K,(A)
be the abelian  category of A modules M such that dima  M 5 p , K(A)
be the category of all A-modules. It is clear that if

O+M+N+P+O

is an exact sequence of K(A) and if M and P belong to K,(A), then
N E K,(A).

Under these conditions, let M E K,(A)  i and let 4 be a prime ideal
of A with dimA/q  = p Then the module M4 over A, is of finite length
t(M,) and this length obviously satisfies the following property:
if 0 = MO  c c M, c C M, = M is a composition series of M
whose quotients MC/M,-1 are of the form Ale,  where t is a prime ideal
of A, then it has exactly t(M,) quotients of the form A/q
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Thus let zP : K,(A)  + Z,(A) be the function defined by

+w = c e(M,hl.
dimA,q=p

It is clear that zP is an additive function defined on the category K,(A)
and has values in the ordered group Z,(A) The function tp is zero on

K,-l(A).
Conversely, it is clear that every additive function on K,(A) which is

zero on Kpml(A)  factors through zP.
If A is a domain, then Z,,(A) 2 Z for n = dim A, and zn(M)  is

the mnk of the A -module M

2. Multiplicity of a module

Assume A is local; let m be its maximal ideal, and let a be an m-primary
ideal. Then, for every nonzero  A-module M , the Samuel polynomial
P,(A4, X) defined in Chap. II is of degree equal to dima M Furthermore,
its leading term is of the type eX’/r!  , where r = dima M and where e
is an integer > 0.

The integer e is, by definition, the multiplicity of M for the pri-
mary ideal a. One writes it as e,(M) ; more  generally, p being a positive
integer and M a module such that dima M 5 p , we set

ea(M,d  =
e,(M) if dima M = p,
o if dima M < p.

It follows from the properties proved in Chap. II that e.(M,p) is an
additive function on K,(A), which is zero on Kp-l(A) ; we thus have the
additivity formula:

~.(M,P)  = c W&.Wq>d

where q runs through the prime ideals with dimA/q  = p (or those with
dim A/q 5  p : it amounts to the same).

In particular, if A is a domain of dimension n , we have

e,(M,n)  = rank(M)%(A).

If a = m : e,(M) = e,(M) is called the multiplicity of M In particular
e,(A) is the multiplicity of the local ring A.

If A is regular, its multiplicity is equal to 1 , according to Chap. IV.
Conversely, if the multiplicity of A is equal to 1 and if A is a domain,
one can show that A is regular (cf. [Nag3],  th. 40.6, and also [Bour],
Chap. VIII, p.  108, exert.  4); an example from Nagata  shows that it is not
enough to assume that A itself is a domain.

Finally, let x be an ideal of definition of A, which is generated by
~1,.  , z, , where n = dim A, According to theorem 1 of Chap. IV, the
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i -th homology group of the Koszul complex K(x,  M) is of finite length
hi(x, M) for every A-module M and every i 2  0, and we have the
formula

n
e&M, n) = c (-l)“h<(x,  M)

i=o

B: Intersection Multiplicity of Two Modules

1. Reduction to the diagonal

Let k be an algebraically closed field, let U and V be two algebraic sets
of the affine space A,(k) ” k” , and let A be the diagonal of the product
space A,(k) x A,(k) ” AZ,(k).  Then A is obviously isomorphic to
A,(k) and the isomorphism identifies (U x V) n  A with U n V This
reduces the study of the intersection of U and V to the study of the
intersection of an  algebraic set with a linear variety.

This viewpoint already occurred in prop. 17 of Chap. III (Dimensions
of intersections in affine space). In particular, in lemma 7, it helps to
view A @k  A as the coordinate ring of A,(k) x A,(k) , and A/p @,+  A/q
and (A alk  A)/0  as the coordinate rings of U x V and A (U and V
irreducible). The &morphism  of (U x v)nA  with UflV  translates into:

A/P@AA/~  2 (A/P@~  AId@  A, (1)
where we identify A wit,h (A c&  A)/0

This formula generalizes as  follows: let A be a commutative alge-
bra with a unit element over a commutative field k (not necessarily al-
gebraically closed); let M and N be two A-modules, B the k-algebra
A&A,and  i? theidealofBgeneratedbythea@l-l&x,  a~A.Then
(A CQ A)/a  is a k -algebra isomorphic to A, and A is given a B-module
structure via this &morphism.  We have the formula ([C&J, Chap. IX,
2.8):

To&M  @Q,  N,A)  2  Tor;(M,N). (2)
So, if

d”-L,i...+LI,+A+O
is an (A @k  A) -projective resolution of A : the bifunctor

(M, N)  ++ (M @b  N)  @B .L
is “resolving”, i.e. Tori(M,  N) 1s naturally isomorphic to the homology
modules of the complex (M C% N)  @B  L.. In particular, if A is the
polynomial algebra k[Xl , , X,] III n variables X, over k , the Koszul
complex KB((X, @ 1 - 18 Xi), B) IS  a free resolution of A, and we have:

To&M,  N) ” H,,(KB((Xi C3 1  - 1 EJ X;),  M c&  N)). (3)

Unknown
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We recover the fact that k[Xl  , , X,] is regular! maps
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and it is clear that M Gk N is naturally isomorphic to the completion of
MC& N for the (m @k  B + A @lk n) -a&c  topology.

4) The ring A & B is complete for the c -adic  topology, where

r = m&B+A&n

and the %%$(M. N) are complete modules for the r-a&c  topology Since

(A 6%  B)/r  = (A/m) @k  (B/n)

and (M & N)/r(M  & N)  = (M/mM) 6% (N/d’),

corollary  3 to proposition 6 of Chap. II is applicable and SO  A & B is
noetherian  and M &k N is a finitely generated (A %k B) -m&h

&reover  the formula & = l+s+z?+.  shows that r is contained

in the radical of A %k  B and the maximal ideals of A &‘k  B correspond
to those of (A/m) @k  (B/n).

In what follows, the reduction to the diagonal will be used via formula
(2) suitably generalized to completed tensor products (see below).

2. Completed tensor products

Let A and B be k-algebras, with k,A,  B noetherian,  and let m, n
denote ideals of A and B respectively such- that A/m and B/n are
k-modules of finite length. Let M (rap.  N ) be a finitely generated A
module (rep.  B-module) given with an m-good filtration (Mp)  (resp.
n-good filtration (Np)  ). Then, M/Mp  and N/N, are k -mod&s offinite
length for every pair (p, q) of natural numbers.

Then, for every natural number i , the modules Torf(M/hl,,  NJN,)
form a projective system, and the completed Tori  are defined by the
formula:

$(M, N) = I@ T.&M/M,,  N/N,). (4)
(PA)

For i = 0, we obtain the completed tensor product (cf. [Sa3]):

M & N = l@ (M/M,  G&.  N/N,). (5)
(PA)

The abelian  groups thus defined have the following properties:

1) The modules ?$(M,  N) do not depend on the chosen good filtration
for M or N , but only on M and on N (and of course on the maximal
ideals of A and B containing m and n ).

2) As the diagonal of N x N is a cofinal  subset, it suffices to take the
projective limit over this diagonal:

G:(M,N)  ” l$Tor;(M/M,,N/N,). (6)
P

Similarly we may take the above limit over p and then over q :

%f(M, N )  Z ~~$&TT~~;(M/M,,N/N,)
P  q

” l@l$Tor;(M/M,,  N/N,)
P P

3) The canonical maps from M @k  N into M/M,  8s  NIN, induce the

5) If 0 --t M’ + M + M” + 0 is an exact sequence of finitely generated
A-modules, the exact sequences

+ Tor:(M/mPM,N/nqN)

+ Tor;(M”/mPM”,  N/nPN)

+ T&,(M’/M’n  mPM,  N/n’N) +
give an exact sequence

t %:(M,  N )  --t %:(M”,N)  - ?&(M’,N)  +

This follows from the following general property: if

r,3  : (e)  + (P;) and + : (Pi) + (c)

are two morphisms  of projective systems of k-modules over an inductively
ordered set, if the P;l  are artinian,  and if the sequences

p; 5+ p; 3!+ p;

are exact, then the limit sequence

l@Pmp:  -‘@Pi - l@e

is exact.
[ Proof. Let (pe)  be an element of Ker(l@P, + l@P:‘)  Let & be

the preimage  of pi  in Pi.  The set E; is non-empty, and has a natural
structure of affine k-mad&.  Let 6; be the set of all &me submodules
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N , M & N the q -ad& q’ -adic and s -adic topologies, and consider the
corresponding graded modules gr(M) , gr(N) , gr(M & N)  The  natural
map M c&  N -+ M & N induces a homomorphism

gr(M)  @a,,  gr(N)  - gr(M & N).
One checks easily (cf. [Sa3])  that this homomorphism is bijective. Hence:

dim(M & N) = dim(M) + dim(N)

and

e.(MsN,dimM+dimN)  = e,(M,dimM).e,,(N,dimN).

Finally if

and
+K,+...+Ko+M+O

+L,-...+Lo+M+O
are A- and B-free resolutions of M and N, (c(KP  & Lq)p+y&,  is
a C-free resolution of M & N In particular if we identify A with the
C-module C/P, where a = (Xl - Yl,.  ,X,, - Y,) we have the equality

Kp  @A  L,  = (K,  @k  L,) @c A,

whence the formula of reduction to the diagonal:

To&M, N) ” Torf(M  & N, A).
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of E, Using the fact that P: is artinian,  one checks readily that the
family (S;i)  has properties (i), ,(iv)  of Bourbaki E.III.58, th. 1, and
this implies (10~.  cit.)  that l@Ei # 0 Hence (pi) belongs to the image
of l@P: in l@P,.  ]

6 ) Suppose now that k is a regular ring of dimension n and suppose that
M, viewed as a k-module, has an M-sequence {al,,  , a7} , i.e. that
there exist r elements ai in the radical of k such that ai+1  is not a
zerwdivisor in M/(al,.  , ai)M , 0 5 i 5 r - 1.

Then %$(M,  N) = 0 for i > n - T Indeed, it suffices to show this
when N is a k-module of finite length, since

+$(M,N)  = l@@(M,N/qnN).

The exact sequence

O-M%M+M/a,M+O,

together with the fact that %$(M,  N) =’  0 if i > n , gives the exact
SXp3lC~:

0 --t +$(M,  N)  2 G~(M,  N).

But a power of al annihilates N , hence also ??$(M,  N) It follows that

%~(M,N)  =o, which proves our assertion for T = 1. If T > 1, we have

%~(M,N)  =o, whence the exact sequence

0 + GLel(~,  N) 2% 5Gt-1(~,~), e t c

In the examples we  will use, the algebra A has an A-sequence of n

elements. It follows that gF(M’,  N) = 0 if M’ is A-free and i >  0

In thii case the functor M H ‘%I(M,  N) is the i-th derived functor of

the functor M H M & N This implies that Gf(M:  N) is a finitely
generated A & B-module.

The machine just constructed will only be used in the following two
special cases:

a )  k  isafield,  A  N  B  ” k[[X,,...,X,,]]:

In this case  the ?$ are zero for i > 0 Moreover, A & B is isomor-
phic to the ring of formal power series C ?Z  rC[[X,,  , X,;  Yl, , Y,]]

Let now q (rep.  q’ ) be an ideal of definition of A (reap.  B ),
and let s be the ideal of C generated by q and q’ Let us put on M ,

b ) k is a complete d&w.&  valuation  ring, A ” B = ~[[XI,. ,X,]]  :
The letter 71  denotes a generator of the maximal ideal of k and x

denotes the residue field k/rk
Put:

C  =  A & B  =  ~[[XI  ,...  ,X,,;Yl,...  ,Y,,]],

;;i  =  A/?rA  =  %[[Xl,...  ,X,1],

c = Ic[[X1  (...  ,X,;Y,  ,...  ,Y,]].
We have (M & N)/?r(M  C&  N) = (M/TM)  & (N/TN).  It follows
that, if ?r is not a zerwdivisor in M and N, we have

dimM$kN  = d i m M + d i m N - 1

Finally, resolving M and N as in a), and taking a C-projective
resolution of A = C/D,  we end up with a spectral  sequence:

Tor;(A,%t(M,N))  =+Tor;+,(M,N)

This spectral sequence degenerates if r is not a zero-divisor in M or
N ; it gives an isomorphism

Tor;(A,M  & N) ” Tor;(M,N).
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3. Regular rings of equal characteristic

B: Intersection Multiplicity of Two Modules 1 0 7

ideal. By Cohen’s theorem, A is then isomorphic to k[[X1,  ,X,,]] , and
we apply (e) above.

Moreover:
Let us look at case  a) of 52  above, i.e. A = k[[Xl,  ,Xn]]  , where k is
a field. Here, the Koszul complex Kc((X, - Yj),C)  is a free resolution
of A = C/a. If M and N are two finitely generated A-modules, the
To&M,  N) may thus be identified with Torf(A,  M & N) , i.e. with the
homology modules of the Koszul complex Kc((Xj - Yj), M &h  N) :

Torf(M,N)  2 &(Kc((X3 - y3), M & N)).

Theorem 1 of Chap. IV applies to this Koszul complex, and gives the
following result:
(*) If M @a  N has finite length, then the Torf(M,  N) have finite
lengths, and the Euler-Poincare’  characteristic

x(M,  N) = c (-l)i !(Tor”(M,  N))
i=o

is equal to the multiplicity ea  (M %k  N, n) of the C-module M Sk  N for
the ideal D Thus

X(M,N)  2 0,
dimaM+dimaN =  dimcM&N  5 n ,
x(M,N)  = 0  ifand  onlyif  dimaM  +dimaN <  n.

Thii result is easily generalized to the regular rings from algebraic
geometry. First of all it is  clear that every regular ring A is a direct product
of a finite number of regular domains (a noetherian  ring A such that, for
every prime ideal p , A, is a domain, is a direct product of a finite number
of domains). If A is a domain, then A is called of equal characteristic
if:  for every prime ideal p , A/p and A have the same characteristic. We
shall say that a regular ring A is of equal characteristic if its “domain
components” are of equal characteristic, which is to say if, for every prime
ideal p , the local ring A, is of equal characteristic.

Theorem 1. If A is a regular ring of equal characteristic, M and
N are two finitely generated A -modules and q a minimaI  prime ideal of
Supp(M @‘a  N) , then:
(1 )  x&M,N)  =  C:I;,’ (-l)“!(Tort(M,N),)  is 2 0;
(2) dimAq  M4  + dima, N,,  5 htAq;
(3)  dim M4  + dim N,,  < hta  q if and only if x4  (M, N) = 0

If we localize at q , and complete, we have

To&M, N),,  =  Tor;‘(Mq,Nq)  =  To+(tiq,&).
Hence we may assume that A is complete, and that q is its maximal

Complement. If a and b denote the annihilators of M and N in A,
m the maximal ideal qA, of A,, c the ideal generated by a + b in A, ,
and if xrl(M, N) > 0, we have the inequalities:

~~(Mq,dimMg).e~‘(N,,dimN,)  5 xs(M,N)

< &(M,,dimM,).  &(Nq,dimNq).

Indeed, if k denotes a Cohen subfield of A,,  we have seen that
,y4(M,  N) is equal to the multiplicity eg(M  &.  N, hta  q) , where

C = A, & A,
and where a is the ideal of C generated by the a & 1 - 1 & a, a E A,,
But the ideal a, & A, + A,, & 6, = f annihilates M4  & N4  and the
assertion follows from the inclusions:

m&Aq+Aq&m  3 a+f > c&Aq+Aq&c.

4. Conjectures

It is natural to conjecture  that theorem 1 extends to all regular rings. On
this subject, one can make the following remarks:

a) Theorem 1 remains true without any regularity hypothesis if M is
of the form A/(zI,..  ,z+),  the zi being an A-sequence. Then,
indeed, M is of finite homological dimension, the To&M, N) are
the homology modules of the complex KA((zi),  N) , and in particular

xqW,W  = d;(Nq,$
where x is the ideal generated by the zi

b) One may assume that A is a complete regular local ring. Indeed, we
can reduce to this case by localization and completion.

c) One may assume that M and N are of the form M = A/e,
N = A/q, p and q being prime ideals of A. Indeed x(M,  N) is
“bi-additive” in M and N , and the general case follows by taking
composition series of M and N whose quotients are of the form Alp ,
A/q.

In the case of equal characteristic, we fast used b), then a) by reduction
to the diagonal. These remarks will allow us to generalize theorem 1:
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5. Regular rings of unequal characteristic (unramified
case)

Theorem 2. Theorem 1 remains true if the hypothesis “A is a regular
ring of equal characteristic” is replaced by the more general hypothesis:

A is a regular ring, and for every prime ideal p of A,
the local  ring A, is of equal characteristic,
or is of unequal  characteristic and is unramiiied.

(As a matter of fact, it suffices that this property is satisfied when p is a
maximal  ideal.  Indeed, if A is a regular local ring of,unequal  characteristic
and  is unramified, every local ring A, is of the same type or is of equal
charzteristic.)

Recall that a local ring of unequal characteristic is unramified if
P e m2> where p denotes the characteristic of the residue field and
m the maximal ideal. Cohen has proved (see [Co], [Sal], and [Bour],
Chap. 1X,$2)  that an unramified regular complete local ring of unequal
characteristic is of the form  k[[Xl, ,X,]]  where k denotes a complete
discrete valuation ring which is unramified (notation from 52,  case b). By
localization and completion, the proof of theorem 2 is reduced to that of:

Lemma 1. If A = k[[X1,.  ,X,,]]  , where k is a complete discrete
valuation ring and if M and N are two finitely generated A-modules
such  that M @a  N is of finite length, then we have:
(1 )  x(M,N)  = C;=+d(pl)‘!(Tor”(M,N)) is 2 0 ;
(2) d i m M + d i m N  5 dimA =  n+l;
(3) Moreover ,y(M,  N)  # 0 if and only  if dim M + dim N = dim A
(Note that we  do not assume that k is unramified. The lemma is thus, in
a sense, more general than theorem 2.)

In view of remark c) of $4  it suffices to give the proof when M and N
are “coprime” (i.e. every endomorphism by scalar multiplication is injective
or zero). We thus consider the different cases ( li denotes a generator of
the maximal ideal of k ):

a) ?I  is not a zero-divisor in M OT  in N :
We know (cf. §2,b)  that

To&M,  N) = Torc(A,  M & N),

where

and that
C N k[[Xl,.  ,X,; YI,  ,Yn]]

dimc(M  & N) = dima  M + dima  N - 1
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Moreover the Koszul  complex Kc((X,  - Y;),  C) is  a free resol_ution  of the
C-module A = C/D. Remark a) of $4  applies to xc(A, M @k  N) , and
proves what we want.

,8)  ?i  annihilates  M and is not a zero-divisor in N :
Then a = Mf?rM  = M, and M is a module over the ring ;i =

x[X,,  ,X,]  We have a spectral sequence ([GE]: Chap. XVI, 54,  2a
and 3a):

Tor;(M,To@,N)) =a Tor;+,(M,N).

The exact sequence 0 + A 5 A + ;i + 0 shows that A is of
homological  dimension 1 over A and that

?i@a  N = N/TN,

and
Tor;‘@,N)  =  TN  =  Annnr(?i)

= set of elements of N annihilated by x.
The spectral sequence reduces to the exact sequence:

+ To&(M,.N)  + To&M,  N) + To&M,  N/TN)

+ TorE,(M,,N)  + ,

whence xA(M,  N) = xx(M,  N/TN)  - x’(M,  TN).
But we assumed that ,N = 0 ; whence

xA(M,  N )  = &M,N/?rN)  2  0 ,

dimxM  + dimxN/?rN 5 72

and the second inequality is strict if and only if x’(M,  N/rrN)  = 0, Since
dimn  M = dimxM  and dimxN/?rN = dima  N/?rN  = dimn  N - 1, we
get what we want.

y ) ?i  annihilates M and N :

We again consider M as an ;i-module:  and N as an A-module; the
spectral sequence now gives:

xA(M,  N) = x’(M,  N/?rN)  - &M,  ,N)

But in this case  N/RN  = ,N = N,  hence xA(M,  N) = 0 ; it remains
to check that dima  M + dimn  N = dim;i  M + dim;i  N < n, But since
M @n  N = M @x N is an z-module of finite length, and the lemma has

been proved for 2, we have d&M + dimxN  I 71,  qed.



110 V. Multiplicities

6. Arbitrary regular rings

It is not known yet (*I  how to extend properties (1) and (3) of th. 1 to such
rings. On the other hand, one can prove the inequality (2) (the “dimension
formula” of algebraic geometry, cf. Chap. III, prop. 17). More precisely:
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Proof (Grothendieck): Let k be the residue field of A We are going to
determine in two different ways the largest integer T such that the “triple
Tor ” Tor:(M,  N, k) is # 0 :
a) The spectral sequence

Tor;(To&M,N),  k) ==+  Tor;+&M,  N, k)

shows that To$(M, N, k) = 0 if j > i + n, and that

To$+,(M,N,  k) = To&To&M,  N),k) # 0 ,

since Torf(M,  N) is a nonzero  A -module of finit~e  length. Hence r = nti
b) The spectral sequence

Tor;(M,Tor;(N,  k)) ==+  Tor;+,(M,  N, k)

shows that r = projdim(M)  + projdim(N)  (use the “maximum cycle
principle”). Whence n + i = proj dim(M) + proj dim(N) , qed.

Theorem 3. Let A be a regular ring, p and q be two prime ideals of
A, r a prime ideal of A minimal among those containing p + q Then:

htap+htaq  2 htar.

By localizing at r , one may assume that A is local with maximal
ideal r In that case, the theorem may be reformulated as follows:
(*) If M and N arefinitelygenerated  A-modules, then

C(M@aN)  <co ==+ dimM+dimN < dimA.

To prove (*)  , one may assume that A is complete. By a theorem of
Cohen [Co], A can be written as Al/aAl  where AI  is a ring of formal
power series over a complete discrete valuation ring, and a is a nonzero
element of AI. If we view M and N as A1 -modules, one shows as in
the case y ) of $5  that

+(M, N) = 0,
and lemma 1,  applied to Al , shows that dim M + dim N < dim Al , and

dimM+dimN 5 dimA = (dimAl)-1,

qed

Let us also mention the following result:

Theorem 4. Let A be a regular local ring of dimension n , let M and
N be two nonzero  finitely generated A -modules such that M @A  N is of
finite Jength,  and Jet i be the largest integer such  that Torf(M,  N) # 0
We have:

i = proj dim(M) + proj dim(N) - n. (*I

(*I  In 1996, 0. Gabber has proved property (l),  i.e. the fact that x(M,  N) is
2 0. See [Be] and [R4].

Moreover, half of (3) had already been proved in 1985 by P. Roberts (see
[Rl],[R3]) and H. Gillet-C.  Soul&  [GiS];  namely

dimM+dimN <  dimA ==+  x(M,N)  =  0 .
It is still unknown whether the conveme  implication is true.

Corollary The hypotheses being those of theorem 4, in order that

Tor:‘(M,N)  = 0 for i>O,

it is necessary and sufficient that M and N are Cohen-Macaulay modules
andthat  dimM+dimN = n.

We can write the integer i from theorem 4 in the following form:

i = (proj dim(M) + dim A4 - n) + (proj dim(N) + dim N - n)
+(n-dimM-dimN)

= (dim M - depth M) + (dim N - depth N)
+(n-dimM-dimN).

But each term between parent,heses  is 2 0 (for the first two, according
to Chap. IV; for the third, according to th. 3). Thus i = 0 if and only if
each of these terms is zero. whence the result we want.

Remark. When the hypotheses of the corollary are satisfied, we have

x(M,N)  = f(M @A  N);
it is probable that the converse is true, and that one has

x(M,  N) < Wf @a  W

if either M or N is not Cohen-Macaulay. More generally, one may con-
jecture that each of the “higher  Euler-Poincar&  characteristics”

xv(M,  N )  =  c (-l)‘!(To&(M,N)), r=l,...,n,
i>o

is 2 0, and t,hat  x7  = 0 if and only if each of the Torf+,(M,  N) is zero,
cf. Chap. IV, Appendix II. This is at least true in the equal characteristic
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case, according to Auslander-Buchsbaum.  That explains why the Grtibner
definition of multiplicities (in terms of !(A4 @a  N) ) gives the right re
sult only when the varieties are locally Cohen-Macaulay  (see the examples
constructed by GrGbner  himself, [Griib]).

C: Connection with Algebraic Geometry

1. Tor-formula

Let X be an algebraic variety, defined over a field k For simplicity, we
suppose that k is algebraically closed, and X is irreducible. Let U,  V, W
be three irreducible subvarieties of X , W being an irreducible component
of U  n V. Suppose that W meets the open set of smooth points of
X, i.e. that the local ring A of X at W is regular (the equivalence
“smooth” = “regular” follows from the fact that the ground field k is
perfect). Then (cf. part B,§3):

dimU+dimV  < dimX+dimW. (1)
When there is equality in this formula, the intersection is called proper at
W (and one says that U  and V intersect properly at W ).

Let pu and pv be the prime ideals of the local ring A which cor-
respond to the subvarieties U and V By hypothesis, A is regular, and
A/(pu + pv) has finite length. The Euler-Poincarb  characteristic

dim x
x~(A/Pu,A/Pv)  = c (-l)"ea(Tori4(Al~u,Al~v))

id
is defined; this is an integer 2 0 (cf. part B).

Theorem 1.
(a) If U  and V do not intersect properly at W? we have

x*(N~u,Al~v) = 0.
(b) If U  and V intersect properly at W, x*(A/p~~,A/prl)  is > 0

and coincides with the intersection multiplicity i(X,  U  V. W) of
U  and V at W, in the sense of Weil,  ChevalJex  Samuel (cf.
W’l,[Ch~lJS~l).

Assertion (a) follows from theorem 1 of part B. We will prove (b) in $4,
after having shown that the function 1(X;  Ii. V, W) = xA(A/pul A/p”)
satisfies the formal properties of an  “intersection multiplicity”.

C: Connection with Algebraic Geometry

2. Cycles on a non-singular affine variety

113

Let X be a non-singular afine variety, of dimension n , and with coordi-
nate ring A If a l N , and if A4 is an A -module of dimension 5 a, the
cycle z,(M) is defined (cf. part A); it is a positive cycle of dimension a,
which is zero if and only if dim M < a

Proposition 1. Let a,b,ceN  suchthat sib  = n+c.  Let M, N
be two A -mod&s such  that:

dim A4 < a, dimN 5 b, dimM@aN 5 c . (2)
Then the cycles z,(M) and zb(N)  are defined, they intersect properly,
and the intersection cycle za(M). t*(N) (defined by linearity from the
function I of $1) coincides with the cycle

zc(To#(M.N)) = x(-l)iz,(Torf(M,  N)). (3)

Let W be an irreducible subvariety of X of dimension c, corre-
sponding to a prime ideal r of A; let B be the local ring A, (i.e. the
local ring of X at W). By definition, the coefficient of W in the cycle
z,(To?(M,  N)) is equal to

c (-1)’ &I(To*;~(M,  N),)  = xB(Mc>  Nr)

Thii coefficient is thus “biadditive”  in A4 and N , and is zero if either
dim A4 < a or dimN < b, cf. part B, 53.  The same is obviously true
for the coefficient of W in t,(M) zb(N)  We are thus reduced to the
case where M = A/p, N = A/q, the ideals p and q being prime and
corresponding to irreducible subvarieties U  and V of X of respective
dimensions a and b In this case, the coefficient of W in t,(TorA(M,  N))
is equal to xB(B/pB,  B/qB)  = 1(X,  U.  V, W) , qed.

Remarks.
1) Proposition 1 gives a very convenient method for computing the inter-

section product z .t’  of two posit,& cycles t and z’ , of dimensions a
and b , intersecting properly: choose modules M and N for the cycles
z and z’ such that dim M@N  has the desired dimension (this is au&
matically  the case if Supp(M)  = Supp(z) and Supp(N)  = Supp(z’) ),
and the cycle 2~’  we want is simply the “cycle of Tor(M, N) “, i.e. the
alternating sum of the cycles of Tor;(M,  N)

2) In the case of algebraic varieties which are not necessarily &line,
coherent sheaves replace modules. If M is such a sheaf, with
dim Supp(M)  < a (which we also write dimM  < a), one defines in
an obvious way the cycle z,(M). Proposition 1 remains valid, with

Unknown

Unknown

Unknown
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the modules Torf(M,  N) being replaced by the sheaves Zor,(M,N)  ,
the Zor being taken over the structural sheaf Ox of X
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3. Basic formulae

We shall see that the product of cycles, defined by means of the function
I from 81 (i.e. by taking the “Tar -formula” as definition), satisfies the
fundamental properties of intersection theory; these properties being local,
we may suppose that the varieties we  consider are affine  and non-singular.
This  will allow us to apply proposition 1 from the preceding section.

a )  commutativzty
Obvious, because of the commutativity  of each Tori

b )  Associatitity
We consider three positive cycles z , 2’ , z” of respective dimensions

Q, a’, a” We assume that the products z z’ , (z z’)  z” ; z’ 2” and
t (z’ 2”) are defined, and we have to prove that

(2 2’)  I” = z. (2 2”).

Let A be the coordinate ring of the given ambient variety X , and let n
be its dimension. Choose an A -module M with support equal to that of
2, and such that z*(M)  = z ; let M’ and M”  be such modules for z’
and t”

The desired formula is proved from the “associativity” of Tor Ac-
cording to [CaE], p, 347, this associativity is expressed by the existence of
the triple Tor Torf(M,  M’, M”) and the two spectral sequences:

T&M,  T&M’,  M”)) ===+  Tor,+,A (M; M’; M”) (4)

To&To&M,  M’), M”) ===+  Tor;+,(M,  M’, M”). (5)
Set c = a + a’ + a” - 272,  and b = a’ f a” - n Since the intersections
considered are proper, we have

dimM’@M”  < b and- dimM@M’@M”  < c.

One can thus define the cycles
y4  = za(Tor;(M’,  M”)),

z+,,~  = z,(Tor;(M,  Tor$(M’,  Ml’))),

zi = z,(Torf(M,  M’, M”)).
The invariance of Euler-PoincarB  characteristics through a spectral se-
quence, applied to (4), gives:

But proposition 1 shows that

cc-v%,,  = z’yp. a n d  c(-l)qy,  = t’.  z”.
P *

Thus
1 (-l)“zi  = z. (*’  t”).

The same  argument, applied to (5), gives

c (-l)“zi  = (2 2’)  z”,

whence the associativity  formula we want

c) Product jormula
Consider two non-singular varieties X and X’ , and two cycles z1 ,

22 (rap.  2: I z; ) on X (rap.  X’). We suppose that z1 z2 and z; .z&
are defined. Then the product cycles ZI  x z; and zz x 2; (on X x X’)
intersect properly, and we have:

(q x Zi)‘(Z2  x 2;)  = (21  z2) x (z; ‘z;), (6)
Indeed, we may assume that these cycles are 2 0, and that X and X’
are affine, with coordinate rings A and A’. If MI, M2,  M; , M;  are
modules corresponding to ZI  , 22, zi , ~4,  one checks that the cycle asso-
ciated to MI  @k  Ml (viewed as a module over the ring E = A& A’ of
X x X’ ) is equal to 21  x z; [ this fact could even be taken as the definition
of the direct product of cycles 1. The formula t,o  be proved then follows
from the “Kiinneth  formula”:

T&MI  @M;,M2  @ M;) = @ TO&MI,&)  @k  To+‘(M;,M;).
i+j=h

d) Reduction to the diagonal
Let A be the diagonal of X x X We have to show the formula

ZI  ‘22  = (t, x 22). A, (7)
valid when the cycles .zl and 22 intersect properly.

Let .4  be the coordinate ring of X, and let B = A @k  A be that
of X x X If MI  and M2  are modules corresponding to z1 and z2
respectively. we have

Tor:‘(Ml,Mz)  = Torf(M,  @k  Mz,A),

cf. part B, $1.  Formula (7) then follows by taking the alternating sum of
the cycles on both sides.

F(-l,%  = c (-l)p+%z,,,
P.4

Unknown
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4. Proof of theorem 1
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We  can assume that t and z’ are positive, thus corresponding to
Ao  -modules  MI and Mi The theorem then follows from the formula:

%%fo  @k, ML  @  k) = To&M,,,  ML)  @k.
We want to show that the functions I and i coincide. We begin by
treating the case  where U is a complete intersection in W ; this means
that  the ideal  pu of 51 is  generated by h elements ~1,.  :zh,  with
h=dimX-dimU=dimV-dimW.

We have Tor~(A/p”,A/pv)  = J&(x,  A/p”),  cf. Chap. IV, car. 2 to
prop. 3. Hence

x~L‘VPU,A/PV)  = ~(F~)“‘WL(WVP~)),

and by theorem 1 of Chap. IV, this gives

x~(A/Pu,A/Pv)  = ex(A/pv),

where x denotes the ideal of A/p”  generated by t,he  images of the zi
But according to [Sa4], p. 83, the multiplicity e,(A/pv)  is  equal  to
i(X, U V, W) , which proves the equality I = i in this case.

The general cake reduces to the previous one, by using reduction to
the diagonal, which is valid for both I and i Since A is non-singular, it
is locally a complete intersection, and the hypotheses of the preceding case
are satisfied, qed.

5. Rationality of intersections

For simplicity we restrict, ourselves to the case where X is an affine variety
with coordinate ring A over k. Let k. be a subfield of k. We say (in
Weil style) that X is defined over  k. if one has chosen a ko  -subalgebra
Ao of A such that A = Ao @k.  k

Let MO  be an Ao-module  (finitely generated, as  usual),  with
dim~.Mo  5  a. We can view MO  @k.  k as an A-module,  and we have
dim(Mo  @k) 5  a, which allows us to define the cycle z,(Mo  @  k) A cycle
z of dimension a on X is called rational over ko  if it is the difference of
two cycles z,(Mo  @  k) and za(M;I  @  k) obtained in this way. The abelian
group of cycles rational over ko  has a basis consisting of the “prime cy-
cles’; q,(Ao/po  @  k) : where po  ranges over  the set of prime ideals of Ao
such that dim(Ao/po)  = a. This definition of the rationality of cycles is
equivalent to that given by Weil  in [W]; this non-trivial fact can be proved
by interpreting the “order of inseparability” which appears in Weil’s book
in t,erms  of tensor products of fields (cf. [ZS], Chap. III, p. 118, th. 38).

T h e o r e m  2  (W&l). Let z and 2’ be two cycles on X , rational over
k,,  , and such that t z’ is defined. Then z. t’ is rational over ko

6. Direct images

Let j : X + Y be a morphism of algebraic varieties (over an algebraically
closed field k : to fix ideas), and let z be a cycle on X of dimension a,
The direct image j*(z)  of t is defined by linearity, starting from the
tax  where z = W , an irreducible subvariety of X In this case, set:

f*(W)  =
1

0 if the closure W’ of f(W) has dimension < a,
dW, if dim W’ = a, where d = [k(W) : k(W’)] is

the degree of the map f : W + W’.
This operation preserves dimension. It is mainly interesting when j is
proper (do not confuse the properness of a morphism with that of an in-
tersection!), because of the following result:

Proposition 2. Let f : X + Y be a proper morphism, Jet z be a
cycle on X of dimension a, and Jet M be a coherent sheaf on  X such
that t,(M)  = z Let fPf (M) be the 4 -th direct image  of M , which is
a coherent sheaf on Y (/EGA/,  Chap. III, th. 4.1.5).
ia) We have  dimR’f(M)  5 a  and dimRqj(M)  < a for Q  2  1.
(b) We have

The proof is done by reducing to the case where the restriction of f
to the support of z is a finite morphism, in which case  the JFf(M) are
zercl  for q  2  1.

7. Pull-backs

They can be defined in diverse situations. We consider only the following:
Let f : X + Y be a morphism, with Y being non-singular, and let

z and  y be cycles on X and Y respectively.  Set Iz/ = Supp(z)  and
IyI  =  Supp(y)  T h e n :

dim/z/  n j-‘(1~1)  2  dim 151 - codim /yI.

The “proper” case is that where there is equality. In that case, one defines
an intersection cycle z .f y with support contained in 1x1 n j-‘(1~1)  by
either one of the following methods:
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Exercises (see also [F], Chap. 8).
1) Let z 3 Y f x, and let z ,y,  t be positive cycles on

X , Y , Z Suppose that X and Y are non-singular. Prove the follow-
ing formula (valid whenever the products which appear are defined):

z.9  (Y ‘f z) = (2 ‘$2  Y) ‘fg  % = (t  ‘fg  xl ‘g  Y. (12)
Recover (for f = g = 1) the associativity  and commutativity  of the inter-
section product. For X = Y , f = 1, deduce the formula:

S’(Z’Y)  = s’(z)  ‘$?Y> (13)
whence g*(s y) = g’(z) g*(y) when Z is non-singular.

2) Same hypotheses as in l), with the difference that Y may be
singular, but that g is proper (it suffices that its restriction to Supp(z) is
so). Prove the formula:

g*b  ‘f&l  z) = s*M  ‘, z, (14)
valid when both sides are defined. (For f = 1, one recovers (lo).)

3 ) Give the conditions of validity for the formula:

(Yl x YZ)  ‘fZXf2  (21 x 4 = (Yl  ‘fld x (YZ ‘f2  4. (15)
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a) Reduction to a standard intersection: a?s”me X to be affine (the
problem being local), which allows it to be embedded in a non-singular
variety V , for example an affine  space. The map z H (2, f(z)) embeds
X into I/ x Y , and thus allows us to identify any cycle z on X with a
cycle  r(z)  on V x Y Then one defines z .f y as the unique cycle on X
such that:

rb ‘f Y) = Y(5)  (V x YL (8)
the intersection product of the right hand side being computed on the non-
singular variety V x Y One checks that the result obtained is independent
of the chosen embedding X + V

b) Choose coherent sheaves M and N over X and Y of respective
cycles z and y , and define z .f  y as the alternating sum of the cycles of
the sheaves Zor;(M,  f*(N))  , the Tori  being taken over 0~ (and being
sheaves on X );  since Y is non-singular, the Tori  are zero for i > dim Y i
and the alternating sum is finite.

Special CCIS~: Take z = X The cycle z .f  y is then written f*(y) and is
called the pull-back of y Recall the conditions under which it is defined:

i) Y is non-singular,
ii) codimf-l(lyl)  = codim 1~1.

No hypothesis on X is necessary.

Rt?IlldCS.
1) When X is non-singular, we have

Z'fY = Z.f'(Y)> (9)
provided that both sides are defined.

2) The special csse  when Y is a line is the starting point of the
theory of linear equivalence of cycles.

Projection formula
It is the formula:

f*(x.r  Y) = f*(x)  ‘Yl

valid when f is proper and both sides are defined.

(10)

The proof can be done by introducing sheaves M and N correspond-
ing to the cycles z and y , and using two spectral sequences with the same
ending and with the Ez  terms being respectively

R’fP*,(M,N)) and lo*i(RJf(M),N),

the ~0~  being taken over ou (cf. [EGA]: Chap. III, prop. 6.9.8).
When X is non-singular, this formula takes the standard form:

f*b’ f’(Y)) = f*(z) Y, (11)

4 ) Let f : Y --t  X , f’ : Y + X’ , with X , X’ non-singular, let
g = (f,f’)  : Y + X xX’. Let z,s’,y  be cycles on X,X’,Y.  Give
conditions of validity for the formula:

(y .f z) ‘f’  5’ = (y ‘I’ 5’) ‘f z = y ‘$,  (z  x z’).

5) Let f : Y + X and g : Z -+ X , with X non-singular. Let
y , z be cycles on Y , 2 Define (under the usual properness conditions) a
“fiber product” y .X  2,  which is a cycle on the fiber product Y xx  Z of
Y and 2 over X What does this  give when g = 11 And when X is
reduced to a point?

8. Extensions of intersection theory

It is clear that the ((  Tar -formula” allows us to define the intersection of
two cycles in more  general cases than those of classical algebraic geometry.
For example:

i) It applies to analytic (or fond) spaces. There is no difficulty, since
every local ring which is involved is of equal characteristic. In the cake
of complez  analytic spaces, the intersection product so obtained coincides
with that defined topologically by Borel-Hmfliger,  cf. [BoH];  this is proved
by reduction to the “elementary” case 4.10 of their paper.
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ii) It applies to every regular scheme X provided that the conjectures
of part B have been checked for the local rings of such schemes; this is
especially the case when these local rings are of equal  characteristic. [ Even
when X is a scheme of finite type over a field k , this gives an intersection
theory a little more general than the usual one; indeed, if k is not perfect,
it may happen that X is regular without being smooth over k ; but W&l’s
theory applies only to the smooth case. ]

iii) More generally, intersection theory applies to every scheme X
which is smooth over a discrete valuation ring C One can indeed show
that the local rings of X satisfy the conjectures from part B [ the proof is
done by a process of reduction to the diagonal which is analogous to ~ and
simpler than - the one used in part B, $5  1. This case is important, be-
cause it gives the zduction  of cycles of Shimura,  [Sh]. We briefly indicate
how:

Let k (resp. K ) be the residue field of C (rep.  its field of fractions).
The scheme X is a disjoint sum of its closed subscheme Xk = X 3’~  k and
its open subscheme XK = X 63~  K ; the scheme Xh is of finite type over
k (it is an “algebraic variety” over k ); similarly. XK is of finite type over
K One sometimes says, rather incorrectly, that Xk  is the reduction of
XK.

Every cycle on Xk defines, by injection, a cycle on X of the same
dimension; every cycle z of dimension a on XK defines by closure a
cycle Z of dimension a + 1 on X The group Z,,(X) of cycles on X of
dimension n thus decomposes into a direct sum:

The projection Zn(X)  --t Zn-l(X~) is given by the restriction of cycles.
From the point of view of sheaves, the cycles from Z(Xk)  correspond to
coherent sheaves M over X which are annihilated by the uniformizer
?r  of C; those from Z(XK)  correspond to coherent sheaves M which
are flat over C (i.e. torsion-free); this decomposition into two types has
already played a role in part B, 55.

Now let z E Z,,(XK)  , and let Z be its closure. We can view Xk  as
a cycle of codimension  1 on X The intersection product

z = x,.2 (computed on X )
belongs to Zn(Xk) ; it is called the reduction of the cycle t Moreover
this operation can be defined without speaking of intersections (and with-
out any hypothesis of smoothness or regularity); from the point of view of
sheaves, it amounts to associating to every coherent sheaf M that is flat
over C the sheaf M/TM.  The hypothesis of smoothness comes only for
proving the formal properties of the operation of reduction: compatibility
with products, direct images, intersection products; the proofs can be done,
as in the preceding sections, by working with identities between sheaves,
or, at worst, with spectral sequences.

The intersection theory on X gives more than the mere reduction of
cycles. Thus if z and  x’ are  cycles on XK, the component of 5. Z’
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in Z(Xk)  gives an interesting invariant of the pair z , z’ (assuming, of
course, that the intersection of ??  and 3 is proper); this invariant is related
to the “local symbols” introduced by N&on,  [NB].
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acyclic complex on a module, 52
additivity formula, 100
annihilator, 4
artinian (ring), 21
Artin-Rees  theorem, 17
associated prime ideal, 6
associativity formula, 114
Auslander theorem, 71
Auslander-Buchsbaum

theorem, 78

basic degrees, 92
binomial polynomials, 19

canonical topology, 19
chain of prime ideals, 29
chain of prime ideals,

extremity, 29
chain of prime ideals, length of, 29
chain of prime ideals, maximal, 45
chain of prime ideals, origin, 29
chain of prime ideals,

saturated, 45
codifferent, 40
Cohen’s theorem, 80
Cohen-Macaulay module, 63
Cohen-Macaulay ring, 63
Cohen-Seidenberg first

theorem, 31
Cohen-Seidenberg second

theorem, 32
completed tensor product, 102
completed Tor, 102
cycle, 99

cycle, direct image, 117
cycle, intersection, 117
cycle, positive, 99
cycle, pull-back of, 118
cycle, rational over a field, 116
cycles, reduction of, 120

Dedekind ring, 39
depth, 61
difference operator, 20
dimension of a module, 33
dimension of a ring, 29
direct image (of a cycle), 117
discrete valuation ring, 37
divisorial ideal, 39
domain, 1

embedded prime ideal, 8
equal characteristic, 106
essential prime ideal, 10
Euler-PoincarB  characteristic, 56

factorial ring, 39
filtered module, 11
filtered ring, 11
finite length, 6
flat module, 2

global homological dimension, 70
graded-free, 91
graded-polynomial algebra, 92
graded module, 14
graded ring, 14

height, 29
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higher Euler-Poincare
characteristics, 57, 88, 111

Hilbert polynomial, 22
Hilbert theorem, 22
homological dimension, 70

ideal of definition, 33
induced filtration, 11
injective  dimension, 70
integer-valued polynomial, 20
integral, 30
integral closure, 32
integrally closed, 32
intersect properly, 112
intersection cycle, 117
irreducible, 4
irreducible component, 5

Jacobson radical, 1

Koszul complex, 51
Krull theorem, 37

lie over, 31
local ring, 1

m -adic filtration, 12
m-adic topology, 12
M -sequence, 59
maximal ideal, 1
minimal homomorphism, 84
minimal free resolution, 84
multiplicity, 100

Nakayama’s lemma, 1
noetherian module, 4
noetherian ring, 4
non-singular variety, 82
normal ring, 37
normalization lemma, 42
Nullstellensatz, 44

prime ideal, 1
product formula, 115
projection formula, 118
projective dimension, 70
proper intersection, 112
pseudo-reflection, 95
pull-back (of a cycle), 118

q-good (filtration), 17
quotient filtration, 11

radical, 3‘
reduction to the

diagonal, 49, 101, 115
reflexive module, 78
regular ring, 75
regular system of parameters,
right interior product, 87

Samuel polynomial, 24-25
Samuel theorem, 24
semilocal ring, 1
Shephard-Todd theorem, 95
shift, 52
spectrum, 4
strict morphism (of filtered

modules), 12
support (of a module), 5
symbolic power (of a prime

ideal), 38
system of parameters, 36

Tor-formula, 112

unramified  (local ring), 108

Weil theorem, 116

Zariski ring, 19
Zariski topology, 4
zero-divisor (in a module), 53
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Index of Notation

S-lA, S-lM  : 2
A,, Mp  : 3
rad(a)  :  3

Spec(A),  V ( a )  :  4

Ann(M) :  4

Supp(M)  :  5

Ass(M) :  6

FA : 11

Im, Coim : 11-12

Ker,  Coker : 11-12

&ii2 :13

gr(M)  :  1 4

A :20

x(M,n)  : 22
Q(M), Q(M,n)  : 22
P((Mi)), P((M$),n)  : 24-25
Pg(M) , Pq(M,n)  : 25
ht(a)  :  29-30

dimA :  2 9

dimM  : 3 3

m(A) : 33

pen)  : 38

VP : 38

algdimk  A : 44
K(z),  K(z,M)  : 51

AnnM(z)  =  Ker(zM)  :  52

K(x) , K(x,  M) : 53
f$(x,M)  : 53
e,(E,n)  : 57, 65

depthA  M : 61

proj dimA M , inj dim, M :
glob dim A : 70
A(d) : 91

(bA(t) : 92

ZtJ  (Ml : 100, 113

e,(M),  e,(M,p)  : 100

CGi :  102

i(X, U. V, IV) : 112, 116

1(X,  u.  V, W) : 112, 116

f*(z),  f*(W) : 117
x.‘fg :  117

f*(y)  :  118

70

Poincare  series, 92
polynomial-like function, 21
primary (submodule, ideal), 10
primary decomposition, 10
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